在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求數(shù)列{An} 和{Bn}的通項;

(2)當n≥7時,比較An與Bn的大小,并證明你的結論.

解析:(1)因為1,a1,a2,a3,…,an,2成等比數(shù)列,

所以a1an=a2an-1=a3an-2=…=akan-k+1=…=1×2=2,

所以An2=(a1an)(a2an-1)(a3an-2)…

(an-1a2)(ana1)=(1×2)n=2n,所以An=.

因為1,b1,b2,b3,…,bn,2成等差數(shù)列,所以b1+bn=1+2=3,所以Bn=·n=n.

所以,數(shù)列{An}的通項An=,數(shù)列{Bn}的通項Bn=n.

(2)An=,Bn=n,

猜想當n≥7時有2nn2,用數(shù)學歸納法證明.

①當n=7時,已驗證2nn2,命題成立.

②假設n=k(k≥7)時,命題成立,即2kk2,

那么2k+1>2×k2,

又當k≥7時,有k2>2k+1,

所以2k+1(k2+2k+1)=(k+1)2.

這就是說當n=k+1時,命題2nn2成立.

根據(jù)①②可知命題對n≥7都成立,故當n≥7時,An>Bn.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn
(1)求數(shù)列{An}和{Bn}的通項;
(2)當n≥7時,比較An和Bn的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在1與2之間插入n個正數(shù),使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù),使這n+2個數(shù)成等差數(shù)列。記,

。w.w.w.k.s.5.u.c.o.m    

(1)       求數(shù)列的通項;(2)當的大小關系(不需證明)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求數(shù)列{An}和{Bn}的通項;

(2)當n≥7時,比較An與Bn的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在1與2之間插入n個正數(shù)A1,A2,A3,…,An,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)B1,B2,B3,…,Bn,使這n+2個數(shù)成等差數(shù)列.記An=A1A2A3An,Bn=B1+B2+…+

Bn.

(1)求數(shù)列{An} 和{Bn}的通項;

(2)當n≥7時,比較AnBn的大小,并證明你的結論.

查看答案和解析>>

同步練習冊答案