在三棱錐P-ABC中,AB=5,BC=4,AC=3,點D是線段PB的中點,平面PAC⊥平面ABC,求證:PA⊥BC.
考點:平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:由已知得到角ACB=90°,即BC⊥AC,再由平面PAC⊥平面ABC,得到BC⊥平面PAC,利用線面垂直的性質(zhì)得到所證.
解答: 證明:∵AB=5,BC=4,AC=3,如圖

∴AB2=BC2+AC2
∴BC⊥AC,
∵平面PAC⊥平面ABC,
∴BC⊥平面PAC,
∴BC⊥PA.
點評:本題考查了勾股定理的逆定理判斷三角形為直角三角形,以及面面垂直的性質(zhì)定理的運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若cos(x+y)cos(x-y)=
1
3
,則cos2x-sin2y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是函數(shù)y=x+
4
x
圖象上任意一點,過點P分別向直線y=x和y軸作垂線,垂足分別為A,B,則
PA
PB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等差數(shù)列,a2+a4=10,a5+a7=22,則S6-S2等于( 。
A、26B、30C、32D、36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點A(1,-2),B(2,-3),C(3,10)是否在方程x2-xy+2y+1=0表示的曲線上?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明命題“若a>b,則
3a
3b
”時,假設(shè)的內(nèi)容是(  )
A、a>b
B、a≤b
C、
3a
3b
D、
3a
3b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義域[-2,2]上的奇函數(shù),且在(0,2]內(nèi)有3個零點,則函數(shù)f(x)的零點個數(shù)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由下面四個圖形中的點數(shù)分別給出了四個數(shù)列的前四項,將每個圖形的層數(shù)增加可得到這四個數(shù)列的后繼項.按圖中多邊形的邊數(shù)依次稱這些數(shù)列為“三角形數(shù)列”、“四邊形數(shù)列”…,將構(gòu)圖邊數(shù)增加到n可得到“n邊形數(shù)列”,記它的第r項為P(n,r).

(1)求使得P(3,r)>36的最小r的取值;
(2)試推導(dǎo)P(n,r)關(guān)于n、r的解析式;
(3)是否存在這樣的“n邊形數(shù)列”,它的任意連續(xù)兩項的和均為完全平方數(shù).若存在,指出所有滿足條件的數(shù)列,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=-
3
5
,且α∈(π,
2
),則cos
α
2
的值為
 

查看答案和解析>>

同步練習冊答案