設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式;
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2014)的值.
(1)見解析(2)f(x)=x2-6x+8,x∈[2,4].(3)1
(1)證明:因?yàn)閒(x+2)=-f(x),
所以f(x+4)=-f(x+2)=f(x),
所以f(x)是周期為4的周期函數(shù).
(2)解:因?yàn)閤∈[2,4],
所以-x∈[-4,-2],4-x∈[0,2],
所以f(4-x)=2(4-x)-(4-x)2=-x2+6x-8.
又f(4-x)=f(-x)=-f(x),所以-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].
(3)解:因?yàn)閒(0)=0,f(1)=1,f(2)=0,f(3)=-1,
又f(x)是周期為4的周期函數(shù),
所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=0,
所以f(0)+f(1)+f(2)+…+f(2014)=f(0)+f(1)+f(2)=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)集合M={f(x)|存在實(shí)數(shù)t使得函數(shù)f(x)滿足f(t+1)=f(t)+f(1)},則下列函數(shù)(a,b,k都是常數(shù)):
;②;③;④.
其中屬于集合M的函數(shù)是_____(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知美國蘋果公司生產(chǎn)某款iPhone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬只還需另投入16萬美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iPhone手機(jī)x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬美元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時(shí),蘋果公司在該款iPhone手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=x2-1,對(duì)任意x∈,f-4m2f(x)≤f(x-1)+4f(m)恒成立,則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可以找到n(n≥2)個(gè)不同的數(shù)x1,x2,…,xn,使得,則n的取值集合是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x3+sin x+1(x∈R)若f(a)=2,則f(-a)的值為 (  ).
A.3 B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=g(x)是二次函數(shù).若f[g(x)]的值域是[0,+∞),則g(x)的值域是(  )
A.(-∞,-1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)
C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對(duì)任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某物體的溫度θ(單位:攝氏度)隨時(shí)間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過多少時(shí)間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案