【題目】首屆中國國際進口博覽會于2018年11月5日至10日在上海的國家會展中心舉辦.國家展、企業(yè)展、經(jīng)貿(mào)論壇、高新產(chǎn)品匯集……首屆進博會高點紛呈.一個更加開放和自信的中國,正用實際行動為世界構(gòu)筑共同發(fā)展平臺,展現(xiàn)推動全球貿(mào)易與合作的中國方案.
某跨國公司帶來了高端智能家居產(chǎn)品參展,供購商洽談采購,并決定大量投放中國市場.已知該產(chǎn)品年固定研發(fā)成本30萬美元,每生產(chǎn)一臺需另投入90美元.設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品萬臺且全部售完,每萬臺的銷售收入為萬美元,
(1)寫出年利潤(萬美元)關(guān)于年產(chǎn)量(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)
(2)當(dāng)年產(chǎn)量為多少萬臺時,該公司獲得的利潤最大?并求出最大利潤.
【答案】(1);(2)當(dāng)年產(chǎn)量為29萬臺時,該公司在該產(chǎn)品中獲得的利潤最大,最大利潤為2380美元.
【解析】
(1)用乘以單價,減去每臺的投入成本以及固定成本,由此求得利潤關(guān)于年產(chǎn)量的表達式.(2)利用二次函數(shù)的最值和基本不等式,求得產(chǎn)量為多少時,獲得最大的利潤.
(1)當(dāng)時, ;
當(dāng)時, .
函數(shù)解析式為
(2)當(dāng)時,因為,在上單調(diào)遞增,
所以當(dāng)時,.
當(dāng)時,
.
當(dāng)且僅當(dāng),即時等號成立.
因為,所以時,的最大值為2380萬美元.
答:當(dāng)年產(chǎn)量為29萬臺時,該公司在該產(chǎn)品中獲得的利潤最大,最大利潤為2380美元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的右焦點為,點在橢圓上,過原點的直線與橢圓相交于、兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),,過點且斜率不為零的直線與橢圓相交于、兩點,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,若在區(qū)間上的最小值為-2,其中是自然對數(shù)的底數(shù),求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+e-x,g(x)=2x+ax3,a為實常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=-1時,證明:存在x0∈(0,1),使得y=f(x)和y=g(x)的圖象在x=x0處的切線互相平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年廣東新高考將實行“”模式,即語文、數(shù)學(xué)、英語必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共選六科參加高考.其中偏理方向是二選一時選物理,偏文方向是二選一時選歷史,對后四科選擇沒有限定.
(1)小明隨機選課,求他選擇偏理方向及生物學(xué)科的概率;
(2)小明、小吳同時隨機選課,約定選擇偏理方向及生物學(xué)科,求他們選課相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點,求△ABM面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加夏令營的400名學(xué)生編號為:001,002,…,400,采用系統(tǒng)抽樣的方法抽取一個容量為40的樣本,且隨機抽得的號碼為003,這400名學(xué)生分住在三個營區(qū),從001到180在第一營區(qū),從181到295在第二營區(qū),從296到400在第三營區(qū),三個營區(qū)被抽中的人數(shù)分別為( )
A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com