【題目】某工廠在甲、乙兩地的兩個分廠各生產(chǎn)某種機器12臺和6臺. 現(xiàn)銷售給A地10臺,B地8臺. 已知從甲地調(diào)運1臺至A地、B地的運費分別為400元和800元,從乙地調(diào)運1臺至A地、B地的費用分別為300元和500元.
(1)設(shè)從甲地調(diào)運x臺至A地,求總費用y關(guān)于臺數(shù)x的函數(shù)解析式;
(2)若總運費不超過9 000元,問共有幾種調(diào)運方案;
(3)求出總運費最低的調(diào)運方案及最低的費用.
【答案】(1)y=-200x+10 600(0≤x≤10,x∈Z);(2)三種;(3)當(dāng)x=10時,總運費y最低,ymin=8 600(元).此時調(diào)運方案是:從甲分廠調(diào)往A地10 臺,調(diào)往B地2臺,乙分廠的6臺機器全部調(diào)往B地.
【解析】試題分析:利用函數(shù)建模思想把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,若從甲地調(diào)運x臺至A地,則從甲地調(diào)運(12-x)臺到B地,從乙地調(diào)運(10-x)臺到A地,從乙地調(diào)運6-(10-x)=(x-4)臺到B地,則總費用=從甲地調(diào)運的費用+從乙地調(diào)運的費用,第二問求解結(jié)合定義域()的取值范圍為正整數(shù),第三問本質(zhì)上就是利用第一問的結(jié)論,也就是求一次函數(shù)(,)的最小值.
試題解析:(1)設(shè)從甲地調(diào)運x臺至A地,則從甲地調(diào)運(12-x)臺到B地,從乙地調(diào)運(10-x)臺到A地,從乙地調(diào)運6-(10-x)=(x-4)臺到B地, (1分)
依題意,得, (5分)
即(,). (6分)
(2)由,即,解得. (8分)
因為,,所以x=8,9,10. (10分)
答:共有三種調(diào)運方案.
(3)因為函數(shù)(,)是單調(diào)減函數(shù),(12分)
所以當(dāng)x=10時,總運費y最低,(元). (13分)
此時調(diào)運方案是:從甲分廠調(diào)往A地10 臺,調(diào)往B地2臺,乙分廠的6臺機器全部調(diào)往B地. (14分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017蘭州高考模擬】.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點,且3EM=EC,試問在線段BC上是否存在一點T,使得MT∥平面BDE,若存在,試指出點T的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某學(xué)科成績(滿分100分)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級抽取了30名男生和20名女生的該學(xué)科成績,得到下圖所示女生成績的莖葉圖.其中抽取的男生中有21人的成績在80分以下,規(guī)定80分以上為優(yōu)秀(含80分).
(1)請根據(jù)題意,將2×2列聯(lián)表補充完整;
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(2)據(jù)此列聯(lián)表判斷,是否有90%的把握認為該學(xué)科成績與性別有關(guān)?
附: ,其中.
參考數(shù)據(jù) | 當(dāng)≤2.706時,無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認為兩變量無關(guān)聯(lián); |
當(dāng)>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)證明:a>0;
(2)若z=a+2b,求z的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是橢圓 的左、右焦點,點是橢圓上一點,且.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于,兩點,若,其中為坐標(biāo)原點,判斷到直線的距離是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有兩個課外活動小組,其中第一小組有足球票6張,排球票4張;第二個小組有
足球票4張,排球票6張.甲從第一小組的10張票中任抽1張,乙從第二小組的10
張票中任抽1張.
(1)兩人都抽到足球票的概率是多少?
(2)兩人中至少有一人抽到足球票的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時,f(x)=- (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個“線性覆蓋函數(shù)”.給出如下四個結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個;
③為函數(shù)的一個“線性覆蓋函數(shù)”;
④若為函數(shù)的一個“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號是___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com