【題目】已知函數(shù).
()若,求的值.
()在中,角,,的對(duì)邊分別是,,,且滿足,求的取值范圍.
【答案】(1);(2).
【解析】
試題(1)先進(jìn)行三角恒等變形,使化為的形式,求出的值,再利用
與的關(guān)系進(jìn)行求值;(2)先利用余弦定理求出角A,化簡(jiǎn),利用B的范圍進(jìn)行求解.
試題解析: (1)f(x)=sincos+cos2
=sin+cos+=sin+.
由f(x)=1,可得sin=.
cos=cos[π-(+x)]=-cos(+x)
=2sin2(+)-1=-.
(2)由acos C+c=b,得a·+c=b,
即b2+c2-a2=bc,所以cos A==.
因?yàn)?/span>A∈(0,π),所以A=,B+C=,
所以0<B<,所以<+<,
所以f(B)=sin+∈.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,我國(guó)施行個(gè)人所得稅專(zhuān)項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項(xiàng)專(zhuān)項(xiàng)附加扣除.某單位老、中、青員工分別有72,108,120人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取25人調(diào)查專(zhuān)項(xiàng)附加扣除的享受情況.
項(xiàng)目 員工 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(1)應(yīng)從老、中、青員工中分別抽取多少人?
(2)抽取的25人中,享受至少兩項(xiàng)專(zhuān)項(xiàng)附加扣除的員工有6人,分別記為A,B,C,D,E,F.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.
①試用所給字母列舉出所有可能的抽取結(jié)果;
②設(shè)M為事件“抽取的2人享受的專(zhuān)項(xiàng)附加扣除至少有一項(xiàng)相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為F1、F2,離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)動(dòng)直線與橢圓C相交于點(diǎn)M,N,橢圓C的左右頂點(diǎn)為,直線與相交于點(diǎn),證明點(diǎn)在定直線上,并求出定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類(lèi)比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于給定的正整數(shù),若數(shù)列滿足對(duì)任意正整數(shù)總成立,則稱(chēng)數(shù)列是“數(shù)列”.
(1)證明:等差數(shù)列是“數(shù)列”;
(2)若數(shù)列既是“數(shù)列”,又是“數(shù)列”,證明: 是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ) 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;
(Ⅱ) 證明:當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4一4:坐標(biāo)系與參數(shù)方程]已知直線l過(guò)原點(diǎn)且傾斜角為, ,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C 的極坐標(biāo)方程為psin =4cos.
(I)寫(xiě)出直線l的極坐標(biāo)方程和曲線C 的直角坐標(biāo)方程;
(Ⅱ)已知直線l過(guò)原點(diǎn)且與直線l相互垂直,若lC=-M,lC=N,其中M,N不與原點(diǎn)重合,求△OMN 面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com