13.已知集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5}
(1)若A⊆B,求實數(shù)m的取值范圍的集合;
(2)若A∩B=∅,求實數(shù)m的取值范圍的集合.

分析 (1)由A⊆B,分A=∅和A≠∅,兩種情況分類討論,能求出實數(shù)m的取值范圍的集合.
(2)由A∩B=∅,分A=∅和A≠∅,兩種情況分類討論,能求出實數(shù)m的取值范圍的集合.

解答 解:(1)∵集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5},A⊆B,
∴當(dāng)A=∅時,m+1>2m-1,解得m<2,
當(dāng)A≠∅時,$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1>5或2m-1<-2}\end{array}\right.$,解得m>4.
∴實數(shù)m的取值范圍的集合為{m|m<2或m>4}.
(2)∵A={x|m+1≤x≤2m-1},B={x|x<-2或x>5},A∩B=∅,
∴當(dāng)A=∅時,m+1>2m-1,解得m<2,
當(dāng)A≠∅時,$\left\{\begin{array}{l}{m+1≤2m-1}\\{2m-1≤5}\\{m+1≥-2}\end{array}\right.$,解得2≤m≤3.
∴實數(shù)m的取值范圍的集合為{m|m≤3}.

點評 本題考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集、子集的定義的合理運用,易錯點是容易忽視空集的情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+$\frac{ax}{x-1}$
(1)若函數(shù)有兩個極值點,求實數(shù)a的取值范圍;
(2)討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.命題p:?x∈R,x2-x+4>0的否定¬p為?x0∈R,x${\;}_{0}^{2}$-x0+4≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)△ABC中,角A,B,C的對邊分別為a、b、c,且2sinA=sinB+sinC,a=2,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)在(0,+∞)上是增函數(shù)并且是定義域上的偶函數(shù)的是( 。
A.$y={x^{\frac{2}{3}}}$B.$y={(\frac{1}{2})^x}$C.y=lnxD.y=x2+2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.計算$({\frac{1}{2}-\frac{{\sqrt{3}}}{2}i}){({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^2}$=(  )
A.$\frac{1}{8}-\frac{{3\sqrt{3}}}{8}i$B.$\frac{1}{8}+\frac{{3\sqrt{3}}}{8}i$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),則橢圓上一點A(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,試運用該性質(zhì)解決以下問題:橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距為2,且過點$(1,\frac{{\sqrt{2}}}{2})$.點B為橢圓C1在第一象限中的任意一點,過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點,則△OCD面積的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是?n0∈N*,f(n0)∉N*或f(n0)>n0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-2|x|-1(-3≤x≤3),
(1)畫出這個函數(shù)的圖象;
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并說明在各個單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案