【題目】已知向量 滿足 ,若M為AB的中點(diǎn),并且 ,則λ+μ的最大值是(
A.
B.
C.
D.

【答案】B
【解析】解:如圖所示, ∵向量 滿足 =1,
不妨取A(1,0),B(0,1).
∵M(jìn)為AB的中點(diǎn),
∴M
=λ(1,0)+μ(0,1)=(λ,μ).
,
=1,
設(shè) ,μ= +sinθ,θ∈[0,2π).
則λ+μ=1+sinθ+cosθ=1+ ,當(dāng) =1時(shí)取等號(hào).
∴λ+μ的最大值是1+
故選:B.

向量 滿足 =1, ,不妨取A(1,0),B(0,1).利用中點(diǎn)坐標(biāo)公式可得M .由 =(λ,μ).及其 ,可得 =1,換元 ,μ= +sinθ,θ∈[0,2π).即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1﹣
(1)求函數(shù)f(x)的定義域和值域;
(2)試判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足an=2an-1-2n+5,(n∈N且n≥2),a1=1,

(I)若bn=an-2n+1,求證數(shù)列{bn}(n∈N*)是常數(shù)列,并求{an}的通項(xiàng);

(II)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{Cn}的前n項(xiàng)和Tn>tn2在n∈N*時(shí)恒成立,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角的對(duì)邊分別為,且

1)證明: 成等比數(shù)列;

2)若角的平分線于點(diǎn),且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)>f(x),且f(x+2)為奇函數(shù),f(4)=﹣1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, ,其中是自然常數(shù), .

(1)當(dāng)時(shí),求的極值,并證明恒成立;

(2)是否存在實(shí)數(shù),使的最小值為 ?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x+ ,(x∈R).
(1)若對(duì)任意x∈[﹣ ],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個(gè)點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,然后再向左平移 個(gè)單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)﹣ 在區(qū)間[﹣2π,4π]內(nèi)的所有零點(diǎn)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,且12.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)以為直徑的圓的面積為時(shí),求的面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B﹣A1D﹣A的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案