1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線及粗虛線畫出的是某多面體的三視圖,則該多面體外接球的表面積為( 。
A.B.$\frac{25}{2}$πC.12πD.$\frac{41}{4}$π

分析 根據(jù)三視圖得出空間幾何體是鑲嵌在正方體中的四棱錐O-ABCD,正方體的棱長為2,A,D為棱的中點,利用球的幾何性質求解即可.

解答 解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O-ABCD,正方體的棱長為2,A,D為棱的中點
根據(jù)幾何體可以判斷:球心應該在過A,D的平行于底面的中截面上,
設球心到截面BCO的距離為x,則到AD的距離為:2-x,
∴R2=x2+($\sqrt{2}$)2,R2=12+(2-x)2
解得出:x=$\frac{3}{4}$,R=$\frac{\sqrt{41}}{4}$,
該多面體外接球的表面積為:4πR2=$\frac{41}{4}$π,
故選D.

點評 本題綜合考查了空間幾何體的性質,學生的空間思維能力,構造思想,關鍵是鑲嵌在常見的幾何體中解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.下列關系正確的是(  )
A.0=∅B.1∈{1}C.∅={0}D.0⊆{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖1是遂寧市某校高中學生身高的條形統(tǒng)計圖,從左到右的各條形表示的學生人數(shù)依次記為A1,A2,…,A10(如A2表示身高(單位:cm)[150,155)內(nèi)的學生人數(shù)).圖2是圖1中身高在一定分為內(nèi)學生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在160~175cm(含160cm,不含175cm)的學生人數(shù),那么在流程圖中的判斷框內(nèi)應填入的條件是( 。
A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.數(shù)列$-\frac{1}{3}$,$\frac{1}{9}$,-$\frac{1}{27}$,$\frac{1}{81}$,…的一個通項公式可能是(  )
A.(-1)n-1$\frac{1}{{3}^{n}}$B.(-1)n-1$\frac{1}{3n}$C.(-1)n$\frac{1}{{3}^{n}}$D.(-1)n$\frac{1}{3n}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知△ABC滿足∠BAC=60°,BC=2,對于△ABC外接圓上一點D,滿足∠BCD=45°,則BD=( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若$\sqrt{2}$sin($\frac{π}{4}$-θ)+2=4cos2($\frac{π}{4}$-$\frac{θ}{2}$),則tanθ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{12}$=1(a>2$\sqrt{3}$)的左焦點為F,左頂點為A,$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O為原點,e為橢圓的離心率,過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)已知點Q(-3,0),P為線段AD上一點且|AP|=λ|AD|,是否存在定值λ使得OP⊥EQ恒成立,若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知過點A(-4,0)作動直線m與拋物線G:x2=2py(p>0)相交于B、C兩點.
(1)當直線的斜率是$\frac{1}{2}$時,$\overrightarrow{AC}$=4$\overrightarrow{AB}$,求拋物線G的方程;
(2)設B、C的中點是M,利用(1)中所求拋物線,試求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.“直線ax+3y+3=0和直線4x+(a+1)y+4=0平行”的充要條件是“a=(  )”
A.-4或3B.-$\frac{3}{7}$C.-3D.-4

查看答案和解析>>

同步練習冊答案