已知向量
a
=(x2-3,1),
b
=(x,-y)
,(其中實(shí)數(shù)y和x不同時(shí)為零),當(dāng)|x|<2時(shí),有
a
b
,當(dāng)|x|≥2時(shí),
a
b

(1)求函數(shù)式y(tǒng)=f(x);
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若對(duì)?x∈(-∞,-2]∪[2,+∞),都有mx2+x-3m≥0,求實(shí)數(shù)m的取值范圍.
分析:(1)因?yàn)楫?dāng)|x|<2時(shí),
a
b
a
b
=0得到y(tǒng)與x的關(guān)系式;當(dāng)|x|≥2時(shí),
a
b
時(shí),得到
-y
x
=
1
x2-3
,聯(lián)立得到f(x)為分段函數(shù);
(2)要求函數(shù)f(x)的單調(diào)遞減區(qū)間即分區(qū)間令y'<0求出x的范圍即可;
(3)根據(jù)mx2+x-3m≥0解出m≥
x
3-x2
,分區(qū)間討論x的范圍得到f(x)的最大值,讓m大于等于最大值即可求出m的范圍.
解答:解:(1)當(dāng)|x|<2時(shí),由
a
b
a
b
=(x2-3)x-y=0
,y=x3-3x;(|x|<2且x≠0)
當(dāng)|x|≥2時(shí),由
a
b
.得y=-
x
x2-3

y=f(x)=
x3-3x,(-2<x<2且x≠0)
x
3-x2
.(x≥2或x≤-2)

(2)當(dāng)|x|<2且x≠0時(shí),由y'=3x2-3<0,
解得x∈(-1,0)∪(0,1),
當(dāng)|x|≥2時(shí),y′=
(3-x2)-x(-2x)
(3-x2)2
=
3+x2
(3-x2)2
>0

∴函數(shù)f(x)的單調(diào)減區(qū)間為(-1,1);
(3)對(duì)?x∈(-∞,-2]∪[2,+∞),都有mx2+x-3m≥0即m(x2-3)≥-x,
也就是m≥
x
3-x2
對(duì)?x∈(-∞,-2]∪[2,+∞)恒成立,
由(2)知當(dāng)|x|≥2時(shí),f′(x)=
(3-x2)-x(-2x)
(3-x2)2
=
3+x2
(3-x2)2
>0

∴函數(shù)f(x)在(-∞,-2]和[2,+∞)都單調(diào)遞增
f(-2)=
-2
3-4
=2
,f(2)=
2
3-4
=-2

當(dāng)x≤-2時(shí)f(x)=
x
3-x2
>0
,
∴當(dāng)x∈(-∞,-2]時(shí),0<f(x)≤2同理可得,當(dāng)x≥2時(shí),有-2≤f(x)<0,
綜上所述得,對(duì)x∈(-∞,-2]∪[2,+∞),f(x)取得最大值2;
∴實(shí)數(shù)m的取值范圍為m≥2.
點(diǎn)評(píng):考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,學(xué)會(huì)用數(shù)量積判斷兩個(gè)向量的垂直關(guān)系,理解平行向量及共線向量滿(mǎn)足的條件,熟悉分段函數(shù)的解析式,理解函數(shù)恒成立時(shí)所取的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上是增函數(shù),t的取值范圍是(  )
A、[0,+∝]
B、[0,13]
C、[5,∝]
D、[5,13]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•楊浦區(qū)二模)(理)已知向量
a
=(x2+1,-x)
,
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設(shè)f(x)在(0,+∞)上取最小值時(shí)的自變量x取值為an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn},對(duì)任意正整數(shù)n,都有bn•(4an2-5)=1成立,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,求
lim
n→∞
Sn
;
(3)在點(diǎn)列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在兩點(diǎn)Ai,Aj(i,j為正整數(shù))使直線AiAj的斜率為1?若存在,則求出所有的數(shù)對(duì)(i,j);若不存在,請(qǐng)你寫(xiě)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•楊浦區(qū)二模)(文)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設(shè)f(x)在(0,+∞)上取最小值時(shí)的自變量x取值為an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn},其中bn=an+12-an2,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,求
lim
n→∞
Sn
C
2
n
;
(3)已知點(diǎn)列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設(shè)過(guò)任意兩點(diǎn)Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當(dāng)i=2008,j=2010時(shí),求直線AiAj的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a=(x2,x+1),b=(1-x,t).若函數(shù)f(x)=a·b在區(qū)間(-1,1)上是增函數(shù),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案