已知α∈(π,
3
2
π),cosα=-
4
5
,則tan(
π
4
-α)等于( 。
分析:由α的范圍及cosα的值,確定出sinα的值,進(jìn)而求出tanα的值,所求式子利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)后,將tanα的值代入計(jì)算即可求出值.
解答:解:∵α∈(π,
3
2
π),cosα=-
4
5
,
∴sinα=-
1-cos2α
=-
3
5
,
∴tanα=
sinα
cosα
=
3
4
,
則tan(
π
4
-α)=
1-tanα
1+tanα
=
1-
3
4
1+
3
4
=
1
7

故選B
點(diǎn)評(píng):此題考查了兩角和與差的正切函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2-12x+32=0的圓心為Q,過(guò)點(diǎn)P(0,2)且斜率為k的直線與圓Q相交于不同的兩點(diǎn)A,B.
(Ⅰ)求k的取值范圍;
(Ⅱ)是否存在常數(shù)k,使得向量
OA
+
OB
PQ
共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,已知d=
1
2
, an=
3
2
,S n=-
15
2
,則n=
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinx,
3
2
),
n
=(cosx,-1)
,設(shè)f(x)=(
m
+
n
)•
n

(1)求函數(shù)f(x)的表達(dá)式,并求f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若f(A)=
1
2
,b=1,S△ABC=
1
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:sin230°+sin290°+sin2150°=
3
2
; sin25°+sin265°+sin2125°=
3
2
通過(guò)觀察上述兩等式的規(guī)律,請(qǐng)你寫出一般性的命題:
sin2(α-60°)+sin2α+sin2(α+60°)
sin2(α-60°)+sin2α+sin2(α+60°)
=
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,已知過(guò)點(diǎn)(1,
3
2
)
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F(1,0),過(guò)焦點(diǎn)F且與x軸不重合的直線與橢圓C交于A,B兩點(diǎn),點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為P,直線PA,PB分別交橢圓C的右準(zhǔn)線l于M,N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)B的坐標(biāo)為(
8
5
3
3
5
)
,試求直線PA的方程;
(3)記M,N兩點(diǎn)的縱坐標(biāo)分別為yM,yN,試問(wèn)yM•yN是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案