已知函數(shù)f(x)=sin2ωx+
3
sinωx•sin(ωx+
π
2
)
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
3
]
上的取值范圍.
(Ⅲ)函數(shù)f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變化得到?
分析:(Ⅰ)根據(jù)解析式需要利用倍角公式和兩角和的正弦公式對(duì)解析式進(jìn)行化簡(jiǎn),再由周期公式T=
ω
求出ω的值;
(Ⅱ)根據(jù)(Ⅰ)求出的解析式,由x的范圍求出2x-
π
6
的范圍,根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的值域;
(Ⅲ)根據(jù)圖象的變換過(guò)程,先周期變換再相位變換,最后上下平移,注意左右平移的單位長(zhǎng)度.
解答:解:(Ⅰ)由題意知,f(x)=
1-cos2ωx
2
+
3
sinωx•cosωx

=
3
2
sin2ωx-
1
2
cos2ωx+
1
2
=sin(2ωx-
π
6
)+
1
2
(3分)
∵f(x)的最小正周期為π,且ω>0
,∴ω=1(14分)
(Ⅱ)解:f(x)=sin(2x-
π
6
)+
1
2

x∈[0,
3
]
,∴2x∈[0,
3
]

2x-
π
6
∈[-
π
6
,
6
]
,∴sin(2x-
π
6
)∈[-
1
2
,1]

f(x)∈[0,
3
2
]
(7分)
即f(x)在區(qū)間[0,
3
]
上的取值范圍是[0,
3
2
]
.(8分)
(Ⅲ)解:把y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
倍(縱坐標(biāo)不變),
再把所得函數(shù)的圖象向右平移
π
12
個(gè)單位,
再把所得函數(shù)的圖象向上平移
1
2
個(gè)單位,可得到f(x)的圖象.(12分)
點(diǎn)評(píng):本題的考點(diǎn)是圖象的變換和解析式的求法,應(yīng)先對(duì)解析式化簡(jiǎn)再把條件代入,利用知識(shí)點(diǎn)有倍角公式和兩角和的正弦公式,圖象變換法則和正弦函數(shù)的性質(zhì),考查了整體思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時(shí)有x2∈S,給出下列四個(gè)結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對(duì)于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將正奇數(shù)列{2n-1}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
記aij是這個(gè)數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個(gè)數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項(xiàng)和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)對(duì)一個(gè)實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過(guò)s,則稱s是M的一個(gè)上界.已知e是無(wú)窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案