19.已知{an}是等差數(shù)列,a3+a11=40,則a6-a7+a8等于(  )
A.20B.48C.60D.72

分析 利用等差數(shù)列通項(xiàng)的性質(zhì),求出a7=20,a6-a7+a8=a7,從而可得結(jié)論.

解答 解:∵數(shù)列{an}是等差數(shù)列,且a3+a11=40,
∴a3+a11=2a7=40,
∴a7=20,
∴a6-a7+a8=a7=20
故選A.

點(diǎn)評 本題考查等差數(shù)列通項(xiàng)的性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=2cos2ωx-1(ω>0),將y=f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位長度后,所得圖象與原圖角重合,則ω的最小值等于( 。
A.1B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,則$\frac{y}{x-3}$的最小值為(  )
A.$\frac{1}{3}$B.-$\frac{1}{2}$C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.3+5+7+…+(2n+7)=n2+8n+15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)P={x|x>4},Q={x|-2<x<2},則( 。
A.P⊆QB.Q⊆PC.P?∁RQD.Q⊆∁RP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},則A∩B=( 。
A.(-2,3)B.(-4,2)C.(-4,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a、b 是實(shí)數(shù),則“a>b”是“a2>b2”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的外接球的表面積為(  )
A.34πB.$\frac{80π}{3}$C.$\frac{91}{3}π$D.114π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)定點(diǎn)A(0,1),常數(shù)m>2,動(dòng)點(diǎn)M(x,y),設(shè)$\overrightarrow p=({x+m,y})$,$\overrightarrow q=({x-m,y})$,且$|{\overrightarrow p}|-|{\overrightarrow q}|=4$.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)設(shè)直線L:$y=\frac{1}{2}x-3$與點(diǎn)M的軌跡交于B,C兩點(diǎn),問是否存在實(shí)數(shù)m使得$\overrightarrow{AB}•\overrightarrow{AC}=\frac{9}{2}$?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案