【題目】已知△ABC的內(nèi)角ABC的對邊分別為a,b,c.且滿足4cos2cos2B+C.

1)求角A;

2)若△ABC的面積為,周長為8,求a.

【答案】1 ;(2.

【解析】

1)利用二倍角公式化簡等式可得關(guān)于cosA的復(fù)合型二次方程,求出cosA再根據(jù)角A的范圍即可確定角A;(2)利用三角形面積公式求出bc,再利用余弦定理及周長可求得關(guān)于a的一元二次方程,求解即可.

1)∵A+B+Cπ,

4cos2cos2B+C)=21+cosAcos2A2cos2A+2cosA+3,

2cos2A2cosA0,解得cosA(舍去),

0Aπ,∴A.

2)∵bcsinA,bc4,

由余弦定理可得,

又∵a+b+c8,∴a2=(8a24,解得a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列滿足,數(shù)列滿足.

(1)求數(shù)列, 的通項公式;

(2)令,求數(shù)列的前項和;

(3)若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(3,5),傾斜角為.

(1)寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程.

(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】針對國家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

支持

保留

不支持

歲以下

歲以上(含歲)

(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;

(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.

(3)在接受調(diào)查的人中,有人給這項活動打出的分?jǐn)?shù)如下: , , , , , , , ,把這個人打出的分?jǐn)?shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)若滿足: ,且,則稱函數(shù)為“指向的完美對稱函數(shù)”.已知是“1指向2的完美對稱函數(shù)”,且當(dāng)時, .若函數(shù)在區(qū)間上恰有5個零點(diǎn),則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】M是正方體的棱的中點(diǎn),給出下列四個命題:①過M點(diǎn)有且只有一條直線與直線都相交;②過M點(diǎn)有且只有一條直線與直線都垂直;③過M點(diǎn)有且只有一個平面與直線都相交;④過M點(diǎn)有且只有一個平面與直線都平行;其中真命題是(

A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)如果曲線在點(diǎn)處的切線的斜率是,求的值;

)當(dāng),時,求證:;

)若存在單調(diào)遞增區(qū)間,請直接寫出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求圓的直角坐標(biāo)方程,并寫出圓心和半徑;

(2)若直線與圓交于兩點(diǎn),求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A.若兩條直線互相平行,那么它們的斜率相等

B.方程能表示平面內(nèi)的任何直線

C.的圓心為,半徑為

D.若直線不經(jīng)過第二象限,則t的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案