【題目】已知三棱臺(tái)ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.
【答案】
(1)證明:梯形BB1C1C中,BB1=CC1=B1C1=2,BC=4得: ,從而B(niǎo)C1⊥CC1,
因?yàn)槠矫鍮B1C1C⊥平面ABC,且AC⊥BC,
所以AC⊥平面BB1C1C,因此BC1⊥AC,
因?yàn)锳C∩CC1=C,所以BC1⊥平面AA1C1C
(2)解:如圖,以CA,CB所在直線分別為x軸,y軸,點(diǎn)C為原點(diǎn)建立空間直角坐標(biāo)系,則A(6,0,0),B(0,4,0),C(0,0,0),C1(0,1, ),B1(0,3, ),D(0,2, ),A1(3,1, ),
平面BB1D的法向量 =(1,0,0),設(shè)平面AB1D的法向量為 =(x,y,z),
則 ,
令z= ,得 ( , ),
所以所求二面角的余弦值是﹣ =﹣ .
【解析】(1)證明BC1⊥CC1 , BC1⊥AC,即可證明BC1⊥平面AA1C1C(2)以CA,CB所在直線分別為x軸,y軸,點(diǎn)C為原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,即可求二面角A1﹣BD﹣B1的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)當(dāng)時(shí),是否存在正實(shí)數(shù),當(dāng)(是自然對(duì)數(shù)底數(shù))時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓:與軸的正半軸交于點(diǎn),以點(diǎn)為圓心的圓:與圓交于,兩點(diǎn).
(1)當(dāng)時(shí),求的長(zhǎng);
(2)當(dāng)變化時(shí),求的最小值;
(3)過(guò)點(diǎn)的直線與圓A切于點(diǎn),與圓分別交于點(diǎn),,若點(diǎn)是的中點(diǎn),試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,京津冀等地?cái)?shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬(wàn)輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點(diǎn)圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預(yù)測(cè)該市車流量為8萬(wàn)輛時(shí)PM2.5的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級(jí)為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬(wàn)輛以內(nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,的首項(xiàng),且滿足,,其中,設(shè)數(shù)列,的前項(xiàng)和分別為,.
(Ⅰ)若不等式對(duì)一切恒成立,求.
(Ⅱ)若常數(shù)且對(duì)任意的,恒有,求的值.
(Ⅲ)在(Ⅱ)的條件下且同時(shí)滿足以下兩個(gè)條件:
(。┤舸嬖谖ㄒ徽麛(shù)的值滿足;
(ⅱ)恒成立.試問(wèn):是否存在正整數(shù),使得,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心在軸上且通過(guò)點(diǎn)的圓與直線相切.
(1)求圓的方程;
(2)已知直線經(jīng)過(guò)點(diǎn),并且被圓C截得的弦長(zhǎng)為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測(cè)量可知邊界萬(wàn)米,萬(wàn)米,萬(wàn)米.
(1)請(qǐng)計(jì)算原棚戶區(qū)建筑用地的面積及的長(zhǎng);
(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)。
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)在線段AA1上是否存在一點(diǎn)E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長(zhǎng);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中(為坐標(biāo)原點(diǎn)),已知兩點(diǎn),,且三角形的內(nèi)切圓為圓,從圓外一點(diǎn)向圓引切線,為切點(diǎn)。
(1)求圓的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn),且,試判斷點(diǎn)是否總在某一定直線上,若是,求出直線的方程;若不是,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)在圓上運(yùn)動(dòng),求的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com