如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn),F(xiàn)為線段PC上一點(diǎn).
(Ⅰ)求證:AE⊥PD;
(Ⅱ)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的 正切值為,若二面角E-AF-C的余弦值為,求的值.

【答案】分析:(Ⅰ)先根據(jù)條件得到△ABC為正三角形,結(jié)合E為BC的中點(diǎn)以及BC∥AD得到AE⊥AD,再利用AD是PD在平面ABCD內(nèi)的射影,從而得到AE與PD垂直.
(Ⅱ)以A為原點(diǎn),AE,AD,AP分別為x,y,z軸,建立空間直角坐標(biāo)系,確定平面AFC、平面AEF的法向量,根據(jù)二面角E-AF-C的余弦值為,利用向量的夾角公式,即可求得結(jié)論.
解答:(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.
因?yàn)镋為BC的中點(diǎn),所以AE⊥BC.又BC∥AD,因此AE⊥AD.
因?yàn)镻A⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD,且PA∩AD=A,所以AE⊥平面PAD,
又PD?平面PAD,所以AE⊥PD;
(Ⅱ)以A為原點(diǎn),AE,AD,AP分別為x,y,z軸,建立空間直角坐標(biāo)系

設(shè)AB=2,=λ,則A(0,0,0),B(,-1,0),D(0,2,0)
E(,0,0),
過(guò)A作AH⊥PD,垂足為H,連接AH,則∠AHE為EH與平面PAD所成最大角,
∵EH與平面PAD所成最大角的正切值為,AE=
∴AH=,∴DH=,∴PD=
∴PA=
∴P(0,0,),F(xiàn)(),=(,-3,0)為平面AFC的一個(gè)法向量
設(shè)平面AEF的法向量為,則,即
∴可取
∵二面角E-AF-C的余弦值為,


=
點(diǎn)評(píng):本題考查直線與平面垂直的性質(zhì),考查空間角問(wèn)題,掌握線面垂直的判定方法,正確運(yùn)用向量法求空間角是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)設(shè)AB=2,若H為線段PD上的動(dòng)點(diǎn),EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點(diǎn)E是BC邊上的中點(diǎn).
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點(diǎn),AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點(diǎn)M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案