【題目】已知函數(shù),.

(1)若,求的最大值;

(2)當時,求證:.

【答案】(1) (2)見解析

【解析】分析:(1)給定區(qū)間求最值需先求導判出在相應區(qū)間上的單調(diào)性;

(2)構造新函數(shù),運用放縮進行處理。先證,又由,,所以。

詳解:(1)解:當時,,

,得,所以時,;時,,

因此的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

的最大值為 .

(2)證明:先證,

,

,的圖象易知,存在,使得,

時,;時,

所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

所以的最大值為

,.

又由,所以,

當且僅當,取“=”成立,即.

點晴:導數(shù)是做題的工具,在解決問題時,一般首先要對題干的轉(zhuǎn)化,帶著目標做下手,一般都是轉(zhuǎn)化成最值的問題,然后最值的問題都是利用單調(diào)性去解決

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是由非負整數(shù)組成的無窮數(shù)列,對每一個正整數(shù),該數(shù)列前項的最大值記為,第項之后各項的最小值記為,記

(1)若數(shù)列的通項公式為,求數(shù)列的通項公式;

(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;

(3)若對任意恒成立,證明:數(shù)列的通項公式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)寫出的普通方程和的直角坐標方程;

2)若相交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中x,y能與1構成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于兩點,當圓的半徑最長時,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知傾斜角為的直線過點,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.曲線的極坐標方程為,直線與曲線分別交于兩點.

1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

2)若,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300.設每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.

1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點;

2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機變量,求每盤游戲出現(xiàn)音樂的概率,及隨機變量的期望;

3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析分數(shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科站技術員為了解某品種樹苗的生長情況,在該批樹苗中隨機抽取一個容量為100的樣本,測量樹苗高度(單位:).經(jīng)統(tǒng)計,高度在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹苗為優(yōu)質(zhì)樹苗.

附:

,其中

1)求頻率分布直方圖中的值;

2)已知所抽取的這100棵樹苗來自于甲、乙兩個地區(qū),部分數(shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有%的把握認為優(yōu)質(zhì)樹苗與地區(qū)有關?

甲地區(qū)

乙地區(qū)

合計

優(yōu)質(zhì)樹苗

5

非優(yōu)質(zhì)樹苗

25

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學知識比賽中共有6個不同的題目,每位同學從中隨機抽取3個題目進行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為,且甲、乙兩位同學對每個題目的作答都是相互獨立、互不影響的.

1)求甲、乙兩位同學總共正確作答3個題目的概率;

2)若甲、乙兩位同學答對題目個數(shù)分別是,,由于甲所在班級少一名學生參賽,故甲答對一題得15分,乙答對一題得10分,求甲乙兩人得分之和的期望.

查看答案和解析>>

同步練習冊答案