【題目】已知橢圓(a>b>0)過點(0,),且離心率為。
(Ⅰ)求橢圓E的方程;
(II)設(shè)直線x my 1,(m R)交橢圓E與A,B兩點,判斷點G(-,0)與以線段AB為直徑的圓的位置關(guān)系,并說明理由。
【答案】(Ⅰ);(Ⅱ)G(-,0)在以AB為直徑的圓外。
【解析】解法一:(I)由已知得,解得所以橢圓E得方程為。
(II)設(shè)點,,AB中點為由得,
所以;,從而
所以.
故
所以,故在以AB為直徑的圓外。
解答二:(I)同解法一
(II)設(shè)點,,則
由得,所以;,
從而
所以,又不共線,所以為銳角。
故點在以AB為直徑的圓外。
【考點精析】認真審題,首先需要了解點與圓的位置關(guān)系(點與圓的位置關(guān)系有三種:若,則點在圓外;點在圓上;點在圓內(nèi)),還要掌握橢圓的標準方程(橢圓標準方程焦點在x軸:,焦點在y軸:)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:
【題目】(2015·新課標1卷)設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0 , 使得f(x0)<0,則a的取值范圍是( )
A.[-,1)
B.[-,)
C.[,)
D.[,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)設(shè)fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內(nèi)有且僅有一個零點(記為an), 且0<an-<()n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·湖南)在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)如圖I所示
若將運動員按成績由好到差編為1~35號,再用系統(tǒng)抽樣方法從中抽取7人,則其中成績在區(qū)間[139,151]上的運動員人數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若,m 是兩條不同的直線,m 垂直于平面 ,則“ ”是“" 的 ( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·山東)設(shè)函數(shù)=. 已知曲線= 在點處的切線與直線平行.
(1)求的值;
(2)是否存在自然數(shù),使得方程=在內(nèi)存在唯一的根?如果存在,求出k;如果不存在,請說明理由;
(3)設(shè)函數(shù)=(表示,中的較小值),求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分15分)某工廠某種航空產(chǎn)品的年固定成本為萬元,每生產(chǎn)件,需另投入成本為,當年產(chǎn)量不足件時,(萬元).當年產(chǎn)量不小于件時,(萬元).每件商品售價為萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(件)的函數(shù)解析式;
(2)年產(chǎn)量為多少件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)設(shè)f(x)=lnx, 0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),則下列關(guān)系式中正確的是( )
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com