【題目】下列說法:

①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

②設(shè)有一個(gè)回歸方程,變量增加一個(gè)單位時(shí),平均增加個(gè)單位;

③線性回歸方程必過);

④在一個(gè)列聯(lián)表中,由計(jì)算得,則有以上的把握認(rèn)為這兩個(gè)變量間有關(guān)系.

其中錯(cuò)誤的個(gè)數(shù)是(  )

A. B. C. D.

【答案】B

【解析】一組數(shù)據(jù)都加上或減去同一個(gè)常數(shù),數(shù)據(jù)的平均數(shù)有變化,方差不變(方差是反映數(shù)據(jù)的波動(dòng)程度的量),①正確;回歸方程中的系數(shù)具備直線斜率的功能,對(duì)于回歸方程 ,當(dāng)增加一個(gè)單位時(shí),平均減少個(gè)單位,②錯(cuò)誤;由線性回歸方程的定義知,線性回歸方程= 必過點(diǎn),③正確;因?yàn)?/span>,故有以上的把握認(rèn)為這兩個(gè)變量間有關(guān)系,④正確,即錯(cuò)誤的個(gè)數(shù)為,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面

2)設(shè)上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法: ①一組數(shù)據(jù)不可能有兩個(gè)眾數(shù);
②一組數(shù)據(jù)的方差必為正數(shù),且方差越大,數(shù)據(jù)的離散程度越大;
③將一組數(shù)據(jù)中的每個(gè)數(shù)都加上同一個(gè)常數(shù)后,方差恒不變;
④在頻率分布直方圖中,每個(gè)長(zhǎng)方形的面積等于相應(yīng)小組的頻率.
其中錯(cuò)誤的個(gè)數(shù)有(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15


(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為ω)的關(guān)系式為: S= ,試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)? 附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

k2=

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,且a+b+c=8.
(1)若a=2,b= ,求cosC的值;
(2)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面積S= sinC,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三某班的一次測(cè)試成績(jī)的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請(qǐng)根據(jù)此解答如下問題:

(1)求班級(jí)的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補(bǔ)充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.

分組

頻數(shù)

頻率

[50,60)

0.08

[60,70)

7

[70,80)

10

[80,90)

[90,100)

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場(chǎng)電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入) 問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場(chǎng)的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的機(jī)坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線兩點(diǎn),求點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案