函數(shù)f(x)=的單調(diào)遞增區(qū)間是( )
A.(1,+∞)
B.(2,+∞)
C.(-∞,1)
D.(-∞,0)
【答案】分析:根據(jù)復(fù)合函數(shù)的同增異減原則,函數(shù)的增區(qū)間即u=x2-2x的單調(diào)減區(qū)間.
解答:解:函數(shù)f(x)=的定義域?yàn)椋篬2,+∞)∪(-∞,0),設(shè),函數(shù)的單調(diào)增區(qū)間即u=x2-2x的單調(diào)減區(qū)間,
u=x2-2x的單調(diào)減區(qū)間為(-∞,0).
故選D.
點(diǎn)評(píng):本題考查了復(fù)合函數(shù)的單調(diào)性,遵循同增異減原則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2lnx的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=|log
1
2
x
|的單調(diào)遞增區(qū)間是( 。
A、(0,
1
2
]
B、(0,1]
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=tan2x的單調(diào)增區(qū)間是
(-
π
4
+
2
,
π
4
+
2
),k∈Z
(-
π
4
+
2
,
π
4
+
2
),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xlnx的單調(diào)遞增區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xex的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案