設F
1,F(xiàn)
2分別是雙曲線
的左、右焦點.若雙曲線上存在點A,使
,則雙曲線的離心率為( )
試題分析:依據(jù)雙曲線的定義
,又∵
,∴
,∵
在直角三角形
中,由
,得e=
,故選B
點評:利用幾何性質(zhì)再結合雙曲線的定義是雙曲線中常見的求離心率題型,屬基礎題
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
方程
的曲線是( )
A.一個點 | B.一條直線 | C.兩條直線 | D.一個點和一條直線 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若雙曲線
的右焦點與拋物線
=12x的焦點重合,則m=______________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直角坐標系
中,點
,點
為拋物線
的焦點,
線段
恰被拋物線
平分.
(Ⅰ)求
的值;
(Ⅱ)過點
作直線
交拋物線
于
兩點,設直線
、
、
的斜率分別為
、
、
,問
能否成公差不為零的等差數(shù)列?若能,求直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知直線
與曲線
交于不同的兩點
,
為坐標原點.
(1)若
,求證:曲線
是一個圓;
(2)若
,當
且
時,求曲線
的離心率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
是偶函數(shù),則函數(shù)的圖象與y軸交點的縱坐標的最大值為:( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C
1:
,拋物線C
2:
,且C
1、C
2的公共弦AB過橢圓C
1的右焦點.
(Ⅰ)當AB⊥
軸時,求
、
的值,并判斷拋物線C
2的焦點是否在直線AB上;
(Ⅱ)是否存在
、
的值,使拋物線C
2的焦點恰在直線AB上?若存在,求出符合條件的
、
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
雙曲線
的實軸長是虛軸長的2倍,則rn=
A. | B. | C.2 | D.4 |
查看答案和解析>>