15.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)的一組基底,則以下的四組向量中不能作為一組基底的是(  )
A.$\overrightarrow{e_1}$,2$\overrightarrow{e_2}$B.$\overrightarrow{e_1}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$
C.-$\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$D.$\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$

分析 $\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)的一組基底,則$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,再考查各組向量是否共線即可.

解答 解:∵$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)的一組基底,則$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,A,B,D三組均不共線,可以作為基底,
對(duì)于C,∵$-\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}=-(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})$,∴兩向量共線,不能作為基底,
故選:B.

點(diǎn)評(píng) 本題考查了作平面基底的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某同學(xué)報(bào)名參加“瘋狂的麥咭”的選拔.已知在備選的10道試題中,該同學(xué)能答對(duì)其中的6題,規(guī)定每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測(cè)試(必須3題全部答完),至少答對(duì)2題才能入選.
(Ⅰ)求該同學(xué)答對(duì)試題數(shù)ξ的概率分布列及數(shù)學(xué)期望;
(Ⅱ)設(shè)η為該同學(xué)答對(duì)試題數(shù)與該同學(xué)答錯(cuò)試題數(shù)之差的平方,記“函數(shù)$f(x)=|η-\frac{1}{2}{|^x}$在定義域內(nèi)單調(diào)遞增”為事件C,求事件C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.清華大學(xué)自主招生考試題中要求考生從A,B,C三道題中任選一題作答,考試結(jié)束后,統(tǒng)計(jì)數(shù)據(jù)顯示共有600名學(xué)生參加測(cè)試,選擇A,B,C三題答卷數(shù)如下表:
ABC
答卷數(shù)180300120
(Ⅰ)負(fù)責(zé)招生的教授為了解參加測(cè)試的學(xué)生答卷情況,現(xiàn)用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應(yīng)分別從選擇B,C題作答的答卷中各抽出多少份?
(Ⅱ)測(cè)試后的統(tǒng)計(jì)數(shù)據(jù)顯示,A題的答卷得優(yōu)的有60份,若以頻率作為概率,在(Ⅰ)問(wèn)中被抽出的選擇A題作答的答卷中,記其中得優(yōu)的份數(shù)為X,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線C1:y2=2x及圓C2:(x-1)2+y2=1.點(diǎn)P(a,b)為C1上一點(diǎn).
(Ⅰ)當(dāng)a=2時(shí),求過(guò)點(diǎn)P的圓C2的切線方程;
(Ⅱ)當(dāng)a>2時(shí),過(guò)點(diǎn)P作圓C2的兩條切線l1,l2分別與y軸交于B,C兩點(diǎn),求△PBC的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知三角形ABC三邊長(zhǎng)分別為x、y、1且x,y∈(0,1),則△ABC為銳角三角形的概率是2-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直線$\sqrt{3}$x-y-$\sqrt{3}$=0與x軸的交點(diǎn)為N,與拋物線y2=2px(p>0)相交于點(diǎn)A,與拋物線的準(zhǔn)線相交于點(diǎn)B,點(diǎn)N為AB的中點(diǎn).
(1)求拋物線的方程;
(2)過(guò)點(diǎn)M(m,0)(m<0)作斜率為$\frac{{\sqrt{3}}}{3}$的直線與拋物線y2=2px相交于C,D兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),如果
|CD|2=$\frac{64}{13}$|FC|•|FD|,求∠CFD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{{{(2x-m)}^2}}}{2-x}$x∈(0,1],它的一個(gè)極值點(diǎn)是x=$\frac{1}{2}$
(Ⅰ)求m的值及f(x)在x∈(0,1]上的值域;
(Ⅱ)設(shè)函數(shù) g(x)=ex+$\sqrt{x}$-2x,求證:函數(shù)y=f(x)與y=g(x)的圖象在x∈(0,1]上沒(méi)有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知F1,(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個(gè)定點(diǎn),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=2$\sqrt{2}$,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$.試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.邊長(zhǎng)為4的菱形ABCD中,滿足∠DCB=60°,點(diǎn)E,F(xiàn)分別是邊CD和CB的中點(diǎn),AC交BD于點(diǎn)H,AC交EF于點(diǎn)O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABD,連接PA,PB,PD,得到如圖所示的五棱錐P-ABFED.
(Ⅰ)求證:BD⊥PA;
(Ⅱ)求點(diǎn)D到平面PBF的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案