【題目】已知動點P到點F(0,1)的距離比它到直線y=-3的距離少2.
(1)求點P的軌跡E的方程.
(2)過點F的兩直線l1、l2分別與軌跡E交于A,B兩點和C,D兩點,且滿足=0,設(shè)M,N兩點分別是線段AB,CD的中點,問直線MN是否恒過一定點,若經(jīng)過,求定點的坐標(biāo);若不經(jīng)過,請說明理由.
【答案】(1)x2=4y;(2)(0,3)
【解析】
(1)由題意知動點P到點F的距離等于它到直線x=﹣1的距離,可得點P軌跡E是拋物線.(2)根據(jù)題意可知直線l1,l2都有斜率,設(shè)直線l1的方程為y=kx+1(k≠0),代入x2=4y,利用根與系數(shù)的關(guān)系可得M(2k,2k2+1),由=0,可得,設(shè)出直線l2,可得N,寫出直線MN的方程,化簡即可得出結(jié)論.
(1)由題意知動點P到點F(0,1)的距離等于它到直線x=-1的距離相等,
所以點P的軌跡E是拋物線,軌跡方程是x2=4y
(2)根據(jù)題意可知,直線l1,l2都有斜率,
設(shè)直線l1的方程為y=kx+1(k≠0),代入x2=4y,得x2-4kx-4=0
設(shè)A(x1,y1),B(x2,y2),則
∴M(2k,2k2+1)∵,∴
設(shè)直線l2:,C(x3,y3),D(x4,y4),同理可得N
所以直線MN的方程為,化簡得:y-3=x,
所以直線MN恒過定點(0,3).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,bsinA=cosB.
(1)求角B的大;
(2)若b=2,△ABC的面積為,求a,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)為5組: , , , , ,得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出的值;
(Ⅱ)求在抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15次的學(xué)生人數(shù);
(Ⅲ)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機抽取2人,求至少抽到1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,而且優(yōu)質(zhì)品檢驗異常嚴(yán)格,檢驗方案是:先從燒制的這批唐三彩中任取 3件作檢驗,這3件唐三彩中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批唐三彩中任取3件作檢驗,若都為優(yōu)質(zhì)品,則這批唐三彩通過檢驗;如果,再從這批唐三彩中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批唐三彩通過檢驗;其他情況下,這批唐三彩都不能通過檢驗.假設(shè)這批唐三彩的優(yōu)質(zhì)品概率為,即取出的每件唐三彩是優(yōu)質(zhì)品的概率都為,且各件唐三彩是否為優(yōu)質(zhì)品相互獨立.
(1)求這批唐三彩通過優(yōu)質(zhì)品檢驗的概率;
(2)已知每件唐三彩的檢驗費用為100元,且抽取的每件唐三彩都需要檢驗,對這批唐三彩作質(zhì)量檢驗所需的總費用記為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為,過任作一條與兩條坐標(biāo)軸都不垂直的直線,與橢圓交于兩點,且的周長為8,當(dāng)直線的斜率為時, 與軸垂直.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在定點,總能使平分?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點F與長軸垂直的直線與橢圓在第一象限相交于點M,.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率為1的直線l與橢圓相交于B,D兩點,若以線段BD為直徑的圓恰好過坐標(biāo)原點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是邊長為的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求證:PB=PD;
(2)若點M,N分別是棱PA,PC的中點,平面DMN與棱PB的交點Q,則在線段BC上是否存在一點H,使得DQ⊥PH,若存在,求BH的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com