分析 首先分析題目因為n為正偶數(shù),用數(shù)學(xué)歸納法證明的時候,若已假設(shè)n=k(k≥2,k為偶數(shù))時命題為真時,因為n取偶數(shù),則n=k+1代入無意義,故還需要證明n=k+2成立.
解答 解:用數(shù)學(xué)歸納法證明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)時
若已假設(shè)n=k(k≥2,k為偶數(shù))時命題為真,因為n只能取偶數(shù),所以還需要證明n=k+2成立.
故答案為:k+2.
點評 此題主要考查數(shù)學(xué)歸納法的概念問題,對學(xué)生的理解概念并靈活應(yīng)用的能力有一定的要求,屬于基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{256}$ | B. | $\frac{1}{128}$ | C. | $\frac{1}{64}$ | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,\sqrt{3)}$ | B. | $({1,\frac{{\sqrt{10}}}{2}}]$ | C. | (1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sum_{i=1}^{n}$(xi-a)最小 | B. | $\sum_{i=1}^{n}$|xi-a|最小 | ||
C. | $\sum_{i=1}^{n}$(xi-a)2最小 | D. | $\frac{1}{n}$$\sum_{i=1}^{n}$|xi-a|最小 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com