已知點(diǎn)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列an的前n項(xiàng)和為f(n)-c,數(shù)列bn(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足:.記數(shù)列前n項(xiàng)和為Tn,
(1)求數(shù)列an和bn的通項(xiàng)公式;
(2)若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式恒成立,求實(shí)數(shù)t的取值范圍.
【答案】分析:(1)因?yàn)辄c(diǎn)是函數(shù)f(x)=ax的圖象上一點(diǎn),所以a=,所以f(x)=,即可得到數(shù)列的前3項(xiàng),進(jìn)而求出數(shù)列的首項(xiàng)與公比,即可得到數(shù)列{an}的通項(xiàng)公式;
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222915588523122/SYS201311012229155885231018_DA/3.png">=,所以數(shù)列{}是以1為首項(xiàng),以1為公差的等差數(shù)列,所以得到Sn,利用bn=Sn-Sn-1求出答案.
(2)利用裂項(xiàng)相消的方法可得:Tn=;進(jìn)而把原不等式化簡(jiǎn)為:當(dāng)m∈[-1,1]時(shí),不等式t2-2mt>0恒成立;設(shè)g(m)=-2tm+t2,m∈[-1,1],然后利用函數(shù)的有界性解決恒成立問題即可得到答案.
解答:解:(1)因?yàn)閒(1)=a=,所以f(x)=
所以,a2=[f(2)-c]-[f(1)-c]=,a3=[f(3)-c]-[f(2)-c]=
因?yàn)閿?shù)列{an}是等比數(shù)列,所以,所以c=1.
又公比q=,所以;
由題意可得:=,
又因?yàn)閎n>0,所以;
所以數(shù)列{}是以1為首項(xiàng),以1為公差的等差數(shù)列,并且有;
當(dāng)n≥2時(shí),bn=Sn-Sn-1=2n-1;
所以bn=2n-1.
(2)因?yàn)閿?shù)列前n項(xiàng)和為Tn,
所以
=
=;
因?yàn)楫?dāng)m∈[-1,1]時(shí),不等式恒成立,
所以只要當(dāng)m∈[-1,1]時(shí),不等式t2-2mt>0恒成立即可,
設(shè)g(m)=-2tm+t2,m∈[-1,1],
所以只要一次函數(shù)g(m)>0在m∈[-1,1]上恒成立即可,
所以
解得t≤-2或t≥2或t=0,
所以實(shí)數(shù)t的取值范圍為(-∞,-2]∪[2,+∞)或者t=0.
點(diǎn)評(píng):本題綜合考查數(shù)列、不等式與函數(shù)的有關(guān)知識(shí),解決此類問題的關(guān)鍵是熟練掌握數(shù)列求通項(xiàng)公式與求和的方法,以及把不等式恒成立問題轉(zhuǎn)化為函數(shù)求最值問題,然后利用函數(shù)的有關(guān)知識(shí)解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知P是函數(shù)f(x)=ex(x>0)的圖象上的動(dòng)點(diǎn),該圖象在點(diǎn)P處的切線l交y軸于點(diǎn)M,過點(diǎn)P作l的垂線交y軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的縱坐標(biāo)為t,則t的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn).等比數(shù)列{an}的前n項(xiàng)和為f(n)-1.?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為1,且前n項(xiàng)和sn滿足
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列的前n項(xiàng)和為Tn,問滿足Tn的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省許昌市五校高二(上)第四次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn).等比數(shù)列{an}的前n項(xiàng)和為f(n)-1.?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為1,且前n項(xiàng)和sn滿足
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列的前n項(xiàng)和為Tn,問滿足Tn的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn).等比數(shù)列{an}的前n項(xiàng)和為f(n)-1.?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為1,且前n項(xiàng)和sn滿足
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列的前n項(xiàng)和為Tn,問滿足Tn的最小正整數(shù)n是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案