在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(1)求橢圓C的方程。
(2)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<時(shí),求實(shí)數(shù)t的取值范圍.
(1) ;(2) 或
解析試題分析:(1)此問主要考察橢圓與雙曲線的性質(zhì),橢圓的離心率與雙曲線的性質(zhì)相等,則,利用直線與圓相切得到圓心到直線的距離等于半徑,解出,然后利用,解出,得到方程;
(2)典型的直線與圓錐曲線相交問題,首先方程聯(lián)立,寫出根與系數(shù)的關(guān)系,代入向量相等的坐標(biāo)表示,得出點(diǎn)坐標(biāo),利用點(diǎn)在橢圓上,代入方程,然后利用,利用弦長公式,得到的范圍,與之前得到的與的關(guān)系式,求出的范圍.
試題解析:(1)∵ ∴ 1分
則橢圓方程為即?設(shè)則
,當(dāng)時(shí),
有最大值為? 解得?∴,橢圓方程是 5分
(2)設(shè)?方程為?
由?整理得.
由,解得.
, 7分
∴ 則,
, 由點(diǎn)P在橢圓上,代入橢圓方程得
① 9分
又由,即,
將,,代入得則,
, ∴② 11分,
由①,得.聯(lián)立②,解得
∴或 13分
考點(diǎn):1.圓錐曲線的性質(zhì);2.直線與圓錐曲線相交問題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并與
雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為,求拋物線的方程和雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線方程為,過點(diǎn)作直線與拋物線交于兩點(diǎn),,過分別作拋物線的切線,兩切線的交點(diǎn)為.
(1)求的值;
(2)求點(diǎn)的縱坐標(biāo);
(3)求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線y=kx+b與曲線交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,,并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),).
(1)寫出直線的直角坐標(biāo)方程;
(2)求直線與曲線的交點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)C(1,0),點(diǎn)A、B是⊙O:x2+y2=9上任意兩個(gè)不同的點(diǎn),且滿足·=0,設(shè)P為弦AB的中點(diǎn).
(1)求點(diǎn)P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點(diǎn):它到直線x=-1的距離恰好等于到點(diǎn)C的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別是橢圓的左右焦點(diǎn),是上一點(diǎn)且與軸垂直,直線與的另一個(gè)交點(diǎn)為.
(1)若直線的斜率為,求的離心率;
(2)若直線在軸上的截距為,且,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com