15.如圖所示,在等腰梯形CDEF中,DE=CD=$\sqrt{2}$,EF=2+$\sqrt{2}$,將它沿著兩條高AD,CB折疊成如圖(2)所示的四棱錐E-ABCD(E,F(xiàn)重合).
(1)求證:BE⊥DE;
(2)設(shè)點M為線段AB的中點,試在線段CE上確定一點N,使得MN∥平面DAE.

分析 (1)證明AD⊥平面ABE,AD⊥BE,AE⊥BE,再用一次線面垂直的判定定理得到BE⊥面DAE,所以DE⊥BE;
(2)取EC的中點G,BE的中點P,連接PM,PG,MG.利用三角形中位線定理結(jié)合線面平行的判定,得到MP∥平面DAE,GP∥平面DAE,從而平面MPG∥平面DAE,由此得到直線MG∥平面DAE,可得點N就是點G.

解答 (1)證明:∵AD⊥EF,∴AD⊥AE,AD⊥AB.
又∵AB∩AE=A,
∴AD⊥平面ABE,∴AD⊥BE.
由題圖(1)和題中所給條件知,四棱錐E-ABCD中,AE=BE=1,AB=CD=$\sqrt{2}$,
∴AE2+BE2=AB2,即AE⊥BE.
又∵AE∩AD=A,
∴BE⊥平面ADE,∴BE⊥DE…(6分)
(2)解:取EC的中點G,BE的中點P,連接PM,PG,MG,
則MP∥AE,GP∥CB∥DA,
∴MP∥平面DAE,GP∥平面DAE.
∵MP∩GP=P,∴平面MPG∥平面DAE.
∵MG?平面MPG,∴MG∥平面DAE,
故當點N與點G重合時滿足條件…(12分)

點評 本題證明了線線垂直和線面平行,著重考查了空間平行與垂直位置關(guān)系的證明等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.A是拋物線y2=2px(p>0)上的一點,F(xiàn)為拋物線的焦點,O為坐標原點,當|AF|=4時,∠OFA=120°,則拋物線的準線方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.在△ABC中,“A>B”是“sin2A>sin2B”必要不充分條件
C.“若tanα$≠\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.要得到y(tǒng)=sin$\frac{x}{2}$的圖象,只需將y=cos($\frac{x}{2}$-$\frac{π}{4}$)的圖象上的所有點( 。
A.向右平移$\frac{π}{2}$B.向左平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)定義在區(qū)間(-1,1)內(nèi),對于任意的x,y∈(-1,1)有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當x<0時,f(x)>0.
(1)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(2)若f(-$\frac{1}{2}$)=1,求方程f(x)+$\frac{1}{2}$=0的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.lg2+lg5=1;${2^{{{log}_2}3}}-{8^{\frac{1}{3}}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知P,Q為橢圓$\frac{x^2}{2}+{y^2}=1$上的兩點,滿足PF2⊥QF2,其中F1,F(xiàn)2分別為左右焦點.
(1)求$|\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|$的最小值;
(2)若$(\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}})⊥(\overrightarrow{Q{F_1}}+\overrightarrow{Q{F_2}})$,設(shè)直線PQ的斜率為k,求k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.橢圓的短軸長為6,焦距為8,則它的長軸長等于10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合M={-1,0,1,2},N={x||x|>1},則M∩N等于.(  )
A.{0}B.{2}C.{1,2}D.{-1,0,1}

查看答案和解析>>

同步練習冊答案