(本小題共13分)
數(shù)列的前項(xiàng)和為,若且(,).
( I )求;
( II ) 是否存在等比數(shù)列滿足?若存在,則求出數(shù)列的通項(xiàng)公式;若不存在,則說明理由.
(共13分)
解:(I)因?yàn)?img width=92 height=24 src="http://thumb.zyjl.cn/pic1/0688/82/30582.gif" >,所以有對,成立 ………2分
即對成立,又, 所以對成立 …………………3分
所以對成立 ,所以是等差數(shù)列, …………………4分
所以有 , …………………6分
(II)存在. …………………7分
由(I),,對成立
所以有,又, ………………9分
所以由 ,則 …………………11分
所以存在以為首項(xiàng),公比為3的等比數(shù)列,
其通項(xiàng)公式為 . ………………13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共13分)
已知函數(shù)
(I)若x=1為的極值點(diǎn),求a的值;
(II)若的圖象在點(diǎn)(1,)處的切線方程為,
(i)求在區(qū)間[-2,4]上的最大值;
(ii)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆北京市豐臺區(qū)高三年級第二學(xué)期統(tǒng)一練習(xí)理科數(shù)學(xué) 題型:解答題
(本小題共13分)
已知函數(shù).
(Ⅰ)若在處取得極值,求a的值;
(Ⅱ)求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共13分)
已知向量,設(shè)函數(shù).
(Ⅰ)求函數(shù)在上的單調(diào)遞增區(qū)間;
(Ⅱ)在中,,,分別是角,,的對邊,為銳角,若,,的面積為,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共13分)
某商場在店慶日進(jìn)行抽獎促銷活動,當(dāng)日在該店消費(fèi)的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標(biāo)有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標(biāo)有“生”“意”“興”“隆”字的球?yàn)橐坏泉劊徊环猪樞蛉〉綐?biāo)有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標(biāo)有“生”“意”“興”三個字的球?yàn)槿泉劊?/p>
(Ⅰ)求分別獲得一、二、三等獎的概率;
(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(文)試題 題型:解答題
(本小題共13分)
已知函數(shù)
(I)當(dāng)a=1時,求函數(shù)的最小正周期及圖象的對稱軸方程式;
(II)當(dāng)a=2時,在的條件下,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com