【題目】已知函數(shù), 為自然對數(shù)的底數(shù).

(Ⅰ)求曲線處的切線方程;

(Ⅱ)關(guān)于的不等式恒成立,求實數(shù)的取值范圍;

(Ⅲ)關(guān)于的方程有兩個實根, ,求證: .

【答案】(1)(2)(3)見解析

【解析】試題分析:(1)由,得,且又,即可求解切線方程;

(2)由題意知上恒成立,利用導(dǎo)數(shù)求解函數(shù)的最小值,進而可求解實數(shù)的取值范圍;

(3)由,則,令,

,得恒成立,即,

不妨設(shè),則,再根據(jù)(2)中的結(jié)論,即可作出證明.

試題解析:

(1)對函數(shù)求導(dǎo)得,

曲線處的切線方程為,即;

(2)記 ,其中,

由題意知上恒成立,下求函數(shù)的最小值,

求導(dǎo)得,令,得,

當變化時, 變化情況列表如下:

0

極小值

, ,

,則,令,得

當變化時, , 變化情況列表如下:

1

0

極大值

,

當且僅當時取等號,

,從而得到

(3)先證,

,則,令,得,當變化時, , 變化情況列表如下:

-

0

+

極小值

恒成立,

,記直線 分別與交于,

不妨設(shè),則

從而,當且僅當時取等號,

由(2)知, ,則 ,

從而,當且僅當時取等號,

因等號成立的條件不能同時滿足,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計本次競賽學(xué)生成績的中位數(shù)和平均分;
(3)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機抽取2名學(xué)生,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,且,正項數(shù)列滿足,其前7項和為42.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;

(3)將數(shù)列的項按照為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面的要求進行排列,得到一個新的數(shù)列:,求這個新數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左右頂點分別為,右焦點為,焦距為,點是橢圓C上異于兩點的動點, 的面積最大值為.

(1)求橢圓C的方程;

(2)若直線與直線交于點,試判斷以為直徑的圓與直線的位置關(guān)系,并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)若函數(shù)在區(qū)間上有兩個不同的零點,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,tanA是以﹣4為第三項,4為第七項的等差數(shù)列的公差,tanB是以2為公差,9為第五項的等差數(shù)列的第二項,則這個三角形是(
A.銳角三角形
B.鈍角三角形
C.等腰直角三角形
D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中, 為正三角形, , 中心點,將沿邊折起,使點至點,已知與平面所成的角為.

(1)求證:平面平面

(2)求已知二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線不過原點.

(1)求過點且與直線垂直的直線的方程;

(2)直線與兩坐標軸相交于AB兩點,若直線與點AB的距離相等,且過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱的圓為.

(1)求圓的方程;

(2)過點作直線與圓交于兩點, 是坐標原點,是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案