【題目】已知圓關于直線對稱的圓為.
(1)求圓的方程;
(2)過點作直線與圓交于兩點, 是坐標原點,是否存在這樣的直線,使得在平行四邊形中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
【答案】(1)(2)存在直線和
【解析】試題分析:(1)將圓的一般方程轉化為標準方程,將圓關于直線對稱問題轉化為點關于直線對稱問題,進而求出圓的方程;(2)先由條件判定四邊形為矩形,將問題轉化為判定兩直線垂直,利用平面向量是數(shù)量積為0進行求解.
試題解析:(1)圓化為標準為,
設圓的圓心關于直線的對稱點為,則,
且的中點在直線上,
所以有,
解得: ,
所以圓的方程為.
(2)由,所以四邊形為矩形,所以.
要使,必須使,即: .
①當直線的斜率不存在時,可得直線的方程為,與圓
交于兩點, .
因為,所以,所以當直線的斜率不存在時,直線滿足條件.
②當直線的斜率存在時,可設直線的方程為.
設
由得: .由于點在圓內(nèi)部,所以恒成立,
,
, ,
要使,必須使,即,
也就是:
整理得:
解得: ,所以直線的方程為
存在直線和,它們與圓交兩點,且四邊形對角線相等.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(Ⅰ)求曲線在處的切線方程;
(Ⅱ)關于的不等式在恒成立,求實數(shù)的取值范圍;
(Ⅲ)關于的方程有兩個實根, ,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黃種人群中各種血型的人所占的比例如下:
血型 | A | B | AB | O |
該血型的人所占比例(%) | 28 | 29 | 8 | 35 |
已知同種血型的人可以輸血,O型血可以輸給任何一種血型的人,其他不同血型的人不能互相輸血,小明是B型血,若小明因病需要輸血,問:
(1)任找一個人,其血可以輸給小明的概率是多少?
(2)任找一個人,其血不能輸給小明的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間共有名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ) 根據(jù)莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某觀測站在港口A的南偏西40°方向的C處,測得一船在距觀測站31海里的B處,正沿著從港口出發(fā)的一條南偏東20°的航線上向港口A開去,當船走了20海里到達D處,此時觀測站又測得CD等于21海里,問此時船離港口A處還有多遠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且為常數(shù)).
(1)當時,討論函數(shù)在的單調(diào)性;
(2)設可求導數(shù),且它的導函數(shù)仍可求導數(shù),則再次求導所得函數(shù)稱為原函數(shù)的二階函數(shù),記為,利用二階導函數(shù)可以判斷一個函數(shù)的凹凸性.一個二階可導的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個函數(shù)在的二階導函數(shù)非負.
若在不是凸函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com