分析 (Ⅰ)求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)f(x)的單調(diào)區(qū)間,從而求出f(x)的最大值即可;
(Ⅱ)設(shè)出M的坐標(biāo),分別求出直線AB的斜率k1,C在點(diǎn)N處的切線斜率k2,由k1=k2,得到$\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{1}-x}_{2}}$=-$\frac{2}{{{x}_{1}+x}_{2}}$,得出矛盾.
解答 解:(Ⅰ)f′(x)=$\frac{(2ax+1)(x-1)}{x}$,
當(dāng)a<0時(shí),由f′(x)=0,得x1=-$\frac{1}{2a}$,x2=1,又x∈[1,2],則有如下分類:
①當(dāng)-$\frac{1}{2a}$≥2,即-$\frac{1}{4}$≤a<0時(shí),f(x)在[1,2]上是增函數(shù),
所以f(x)max=f(2)=2-ln2.
②當(dāng)1<-$\frac{1}{2a}$<2,即-$\frac{1}{2}$<a<-$\frac{1}{4}$時(shí),f(x)在[1,-$\frac{1}{2a}$)上是增函數(shù),在(-$\frac{1}{2a}$,2]上是減函數(shù),
所以f(x)max=f(-$\frac{1}{2a}$)=1-$\frac{1}{4a}$+ln(-2a).
③當(dāng)-$\frac{1}{2a}$≤1,即a≤-$\frac{1}{2}$時(shí),f(x)在[1,2]上是減函數(shù),
所以f(x)max=f(1)=1-a.
綜上,函數(shù)f(x)在[1,2]上的最大值為:
f(x)max=$\left\{\begin{array}{l}{2-ln2,(-\frac{1}{4}≤a<0)}\\{1-\frac{1}{4a}+ln(-2a),(-\frac{1}{2}<a<-\frac{1}{4})}\\{1-a,(a≤-\frac{1}{2})}\end{array}\right.$;
(Ⅱ)設(shè)M(x0,y0),則點(diǎn)N的橫坐標(biāo)為x0=$\frac{{{x}_{1}+x}_{2}}{2}$,
直線AB的斜率k1=$\frac{{{y}_{1}-y}_{2}}{{{x}_{1}-x}_{2}}$=$\frac{1}{{{x}_{1}-x}_{2}}$[a(${{x}_{1}}^{2}$-${{x}_{2}}^{2}$)+(1-2a)(x1-x2)+lnx2-lnx1]
=a(x1+x2)+(1-2a)+$\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{1}-x}_{2}}$,
C在點(diǎn)N處的切線斜率
k2=f′(x0)=a(x1+x2)+(1-2a)-$\frac{2}{{{x}_{1}+x}_{2}}$,
假設(shè)曲線C在點(diǎn)N處的切線平行于直線AB,則k1=k2,
即$\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{1}-x}_{2}}$=-$\frac{2}{{{x}_{1}+x}_{2}}$,所以ln$\frac{{x}_{2}}{{x}_{1}}$=$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{1+\frac{{x}_{2}}{{x}_{1}}}$,
不妨設(shè)x1<x2,$\frac{{x}_{2}}{{x}_{1}}$=t>1,則lnt=$\frac{2(t-1)}{1+t}$,
令g(t)=lnt-$\frac{2(t-1)}{1+t}$(t>1),g′(t)=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
所以g(t)在(1,+∞)上是增函數(shù),又g(1)=0,
所以g(t)>0,即lnt=$\frac{2(t-1)}{1+t}$不成立,
所以曲線C在點(diǎn)N處的切線不平行于直線AB.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及直線的斜率問題,考查分類討論思想,換元思想,是一道綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1),1 | B. | (0,-1),1 | C. | (-1,0),1 | D. | (1,0),1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{22}{7}$ | B. | $\frac{25}{8}$ | C. | $\frac{23}{7}$ | D. | $\frac{157}{50}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | ±$\frac{2\sqrt{5}}{5}$ | C. | -$\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x+\sqrt{3}y=2$ | B. | $\sqrt{3}x+y=2$ | C. | $x+\sqrt{3}y=1$ | D. | $\sqrt{3}x+y=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com