13.已知θ∈(π,2π),$\overrightarrow{a}$=(1,2),$\overrightarrow$=(cosθ,sinθ),若$\overrightarrow{a}$∥$\overrightarrow$,則cosθ的值為( 。
A.$\frac{\sqrt{5}}{5}$B.±$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

分析 利用向量共線定理、三角函數(shù)基本關(guān)系式.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,∴2cosθ-sinθ=0,
又sin2θ+cos2θ=1,θ∈(π,2π),
則cosθ=-$\frac{\sqrt{5}}{5}$,
故選:C.

點(diǎn)評 本題考查了向量共線定理、三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點(diǎn)D(0,1),一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)連線互相垂直.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過$M(0,-\frac{1}{3})$的直線l交橢圓C于A,B兩點(diǎn),判斷點(diǎn)D與以AB為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若復(fù)數(shù)z滿足|z|=1(i為虛數(shù)單位),則|z-2i|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)f(x)=ax2-(2a-1)x-lnx(a為常數(shù),a≠1).
(Ⅰ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(Ⅱ)記函數(shù)y=f(x)圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N.判斷曲線C在點(diǎn)N處的切線是否平行于直線AB?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$內(nèi)的任意一點(diǎn),當(dāng)該區(qū)域的面積為2時(shí),z=x+2y的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(I)化簡求值:${log_{\frac{1}{3}}}\sqrt{27}+lg25+lg4+{7^{-{{log}_7}2}}+{(-0.98)^0}$;
(II)已知角α的終邊上一點(diǎn)$P(\sqrt{2},-\sqrt{6})$,求值:$\frac{{cos(\frac{π}{2}+α)cos(2π-α)+sin(-α-\frac{π}{2})cos(π-α)}}{{sin(π+α)cos(\frac{π}{2}-α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)與函數(shù)y=x相等的是( 。
A.$y={({\sqrt{x}})^2}$B.$y=\sqrt{x^2}$C.$y={({\root{3}{x}})^3}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)雙曲線M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+6}$=1(-2≤m<0)的焦距取得最小值時(shí),雙曲線M的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$y={({\frac{1}{3}})^{|x|}}$的單調(diào)遞增區(qū)間是(-∞,0].

查看答案和解析>>

同步練習(xí)冊答案