如圖,四棱錐的底面為正方形,側(cè)面底面為等腰直角三角形,且分別為底邊和側(cè)棱的中點.

(1)求證:∥平面;
(2)求證:平面
(3)求二面角的余弦值.
(1)詳見解析;(2)詳見解析;(3)所以二面角的余弦值為

試題分析:(1)求證:∥平面,證明線面平行,首先證明線線平行,可用三角形的中位線平行,也可用平行四邊形的對邊平行,注意到的中點,取的中點,連接,,則所以是△的中位線,證得四邊形是平行四邊形,從而得,從而可證∥平面;(2)求證:平面,可用空間向量法,注意到平面平面,,可以點為原點,分別以軸,建立空間直角坐標(biāo)系,由題意設(shè),則的各點坐標(biāo),從而得,,利用數(shù)量積得,,從而得證;(Ⅲ)求二面角的余弦值,由(2)建立空間直角坐標(biāo)系,可設(shè)平面的法向量為,求出一個法向量,由(2)可知平面的法向量是,利用向量的夾角公式,即可求得二面角的余弦值.
試題解析:(1)取的中點,連接.
因為,分別是,的中點,
所以是△的中位線. 所以,且
又因為的中點,且底面為正方形,
所以,且.所以,且
所以四邊形是平行四邊形.所以
平面,平面,所以平面.                 4分

(2)證明:因為平面平面,
,且平面平面
所以平面
所以,
又因為為正方形,所以
所以兩兩垂直.
以點為原點,分別以軸,
建立空間直角坐標(biāo)系(如圖). 
由題意易知,   設(shè),則
,,,,
因為,,,

所以,
又因為,相交于,所以平面.          9分

(3)易得
設(shè)平面的法向量為,則
,所以
,則
由(2)可知平面的法向量是,
所以 .
由圖可知,二面角的大小為銳角,
所以二面角的余弦值為.          14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,平面, 是的中點,,
(1)證明:∥平面;
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正四棱錐P-ABCD中,PA=AB=,點M,N分別在線段PA和BD上,BN=BD.
(1)若PM=PA,求證:MN⊥AD;
(2)若二面角M-BD-A的大小為,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,側(cè)棱底面,過垂直點,作垂直點,平面點,且,.

(1)設(shè)點上任一點,試求的最小值;
(2)求證:、在以為直徑的圓上;
(3)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中點,,延長AEBCF,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示.

(1)求證:AE⊥平面BCD;
(2)求二面角A–DC–B的余弦值.
(3)在線段上是否存在點使得平面?若存在,請指明點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在四棱錐中,底面是矩形,平面,,,的中點,是線段上的點.

(1)當(dāng)的中點時,求證:平面;
(2)要使二面角的大小為,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F(xiàn)為PC的中點,AF⊥PB.

(1)求PA的長;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體ABCD-A1B1C1D1中,若E是A1C1的中點,則直線CE與BD的位置關(guān)系是   .

查看答案和解析>>

同步練習(xí)冊答案