設(shè)向量
a
b
的長(zhǎng)度分別為4和3,夾角為60°,則|
a
+
b
|的值為( 。
A、37
B、13
C、
37
D、
13
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積運(yùn)算性質(zhì)即可得出.
解答: 解:∵向量
a
b
的長(zhǎng)度分別為4和3,夾角為60°,
|
a
|
=4,|
b
|
=3,
a
b
=4×3×cos60°=6.
則|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
42+32+2×6
=
37

故選:C.
點(diǎn)評(píng):本題考查了向量數(shù)量積運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角形ABC放在第一象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(1,0),如圖所示:拋物線y=ax2-ax-2經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo)及a的值;
(2)在x軸下方的拋物線上有一動(dòng)點(diǎn)M,其橫坐標(biāo)為m,△ABM的面積為S,求S關(guān)于m的關(guān)系是,并寫出自變量m的取值范圍
(3)在拋物線上是否存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對(duì)于任意的實(shí)數(shù)x,y有f(xy)=f(x)+f(y),當(dāng)x>1時(shí),f(x)>0.
(1)求證:f(x)在(0,+∞)上是增函數(shù);
(2)若f(2)=1,對(duì)任意實(shí)數(shù)t,不等式f(t2+1)-f(t2-kt+1)≤2恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α,β,γ,δ,其中γ∩δ=l,α∩γ=a,β∩γ=a′,a∥a′;α∩δ=b,β∩δ=b′,b∥b′.上述條件能否保證有α∥β?若能,給出證明;若不能,添加適當(dāng)?shù)臈l件,保證有α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=esinx-x,現(xiàn)給出如下四個(gè)結(jié)論:
①f(x)是奇函數(shù);
②f(x)是偶函數(shù);
③f(x)在R上是增函數(shù);
④f(x)在R上是減函數(shù).
其中正確結(jié)論的個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=
1
anan+1
,Sn=b1+b2+…bn,若Sn
m-2015
2
對(duì)一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用定義證明函數(shù)f(x)=1-
2
x
在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax5+bx3+2,若f(-3)=15,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,cosB=-
5
13
,cosC=
4
5
.求:
(1)sin(B+C);
(2)sinA.

查看答案和解析>>

同步練習(xí)冊(cè)答案