【題目】2018126日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實(shí)施意見》,衛(wèi)生部對(duì)16所大學(xué)食堂的“進(jìn)貨渠道合格性”和“食品安全”進(jìn)行量化評(píng)估.滿10分者為“安全食堂”,評(píng)分7分以下的為“待改革食堂”.評(píng)分在4分以下考慮為“取締食堂”,所有大學(xué)食堂的評(píng)分在7~10分之間,以下表格記錄了它們的評(píng)分情況:

(1)現(xiàn)從16所大學(xué)食堂中隨機(jī)抽取3個(gè),求至多有1個(gè)評(píng)分不低于9分的概率;

(2)以這16所大學(xué)食堂評(píng)分?jǐn)?shù)據(jù)估計(jì)大學(xué)食堂的經(jīng)營(yíng)性質(zhì),若從全國(guó)的大學(xué)食堂任選3個(gè),記表示抽到評(píng)分不低于9分的食堂個(gè)數(shù),求的分布列及數(shù)學(xué)期望.

【答案】(1)(2)見解析

【解析】

(1)根據(jù)題意,利用概率的求和公式,計(jì)算所求的概率值;

(2)由題意知隨機(jī)變量X的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫出分布列,再計(jì)算數(shù)學(xué)期望值.

解:(1)設(shè)表示所抽取3個(gè)中有所大學(xué)食堂評(píng)分不低于9分,至多有1個(gè)評(píng)分不低于9分記為事件,則.

(2)由表格數(shù)據(jù)知,從16所大學(xué)食堂任選1個(gè)評(píng)分不低于9分的概率為,

由題知的可能取值為0,1,2,3

,

的分布列為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號(hào)的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號(hào)空氣凈化器(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為12萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為10萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬(wàn)元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:

(1)求利潤(rùn)函數(shù)的解析式(利潤(rùn)=銷售收入-總成本);

(2)工廠生產(chǎn)多少百臺(tái)產(chǎn)品時(shí),可使利潤(rùn)最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是以為斜邊的直角三角形,,,

1)若線段上有一個(gè)點(diǎn),使得平面,請(qǐng)確定點(diǎn)的位置,并說明理由;

2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐試驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的試驗(yàn)來估計(jì)的值,試驗(yàn)步驟如下:①先請(qǐng)高二年級(jí) 500名同學(xué)每人在小卡片上隨機(jī)寫下一個(gè)實(shí)數(shù)對(duì);②若卡片上的能與1構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計(jì)上交的卡片數(shù),記為;④根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值.假如本次試驗(yàn)的統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1若曲線處的切線方程為,求實(shí)數(shù)的值;

2設(shè),若對(duì)任意兩個(gè)不等的正數(shù),,都有恒成立,求實(shí)數(shù)的取值范圍;

3若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點(diǎn)(1,13),且函數(shù)對(duì)稱軸方程為.

(1)求函數(shù)的解析式;

(2)設(shè)函數(shù),求在區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正確結(jié)論是( )

A. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”

B. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”

D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,均是邊長(zhǎng)為2的等邊三角形,點(diǎn)中點(diǎn),平面平面.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案