【題目】已知函數(shù),

1若曲線處的切線方程為,求實(shí)數(shù)的值;

2設(shè),若對(duì)任意兩個(gè)不等的正數(shù),,都有恒成立,求實(shí)數(shù)的取值范圍;

3若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

【答案】1;2;3.

【解析】

試題分析:1借助題設(shè)條件運(yùn)用導(dǎo)數(shù)的幾何意義建立方程求解;2借助題設(shè)運(yùn)用轉(zhuǎn)化化歸的思想進(jìn)行轉(zhuǎn)化再運(yùn)用導(dǎo)數(shù)知識(shí)求解;3依據(jù)題設(shè)先將問(wèn)題進(jìn)行轉(zhuǎn)化,再借助導(dǎo)數(shù)知識(shí)分類(lèi)整合思想分類(lèi)探求求解.

試題解析:

1,得,

由題意,所以

2,

因?yàn)閷?duì)任意兩個(gè)不等的正數(shù),都有

設(shè),則,即恒成立,

問(wèn)題等價(jià)于函數(shù),即為增函數(shù),

所以上恒成立,即上恒成立,

所以,即實(shí)數(shù)的取值范圍是

3不等式等價(jià)于,

整理得,

設(shè),由題意知,在上存在一點(diǎn),使得

因?yàn)?/span>,所以,令,得

當(dāng),即時(shí),上單調(diào)遞增,

只需,解得

當(dāng),即時(shí),處取最小值,

,即,可得,

考查式子,因?yàn)?/span>,可得左端大于1,而右端小于1,所以不等式不可能成立.

當(dāng),即時(shí),上單調(diào)遞減,

只需,解得

綜上所述,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加5項(xiàng)預(yù)賽,成績(jī)?nèi)缦拢?/span>

甲:78 76 74 90 82

乙:90 70 75 85 80

)用莖葉圖表示這兩組數(shù)據(jù);

)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對(duì)任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每輪游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓是否出現(xiàn)音樂(lè)相互獨(dú)立.

(1)玩三輪游戲,至少有一輪出現(xiàn)音樂(lè)的概率是多少?

(2)設(shè)每輪游戲獲得的分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018126日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實(shí)施意見(jiàn)》,衛(wèi)生部對(duì)16所大學(xué)食堂的“進(jìn)貨渠道合格性”和“食品安全”進(jìn)行量化評(píng)估.滿(mǎn)10分者為“安全食堂”,評(píng)分7分以下的為“待改革食堂”.評(píng)分在4分以下考慮為“取締食堂”,所有大學(xué)食堂的評(píng)分在7~10分之間,以下表格記錄了它們的評(píng)分情況:

(1)現(xiàn)從16所大學(xué)食堂中隨機(jī)抽取3個(gè),求至多有1個(gè)評(píng)分不低于9分的概率;

(2)以這16所大學(xué)食堂評(píng)分?jǐn)?shù)據(jù)估計(jì)大學(xué)食堂的經(jīng)營(yíng)性質(zhì),若從全國(guó)的大學(xué)食堂任選3個(gè),記表示抽到評(píng)分不低于9分的食堂個(gè)數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】供電部門(mén)對(duì)某社區(qū)位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說(shuō)法錯(cuò)誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費(fèi),選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有些事,有些人會(huì)永遠(yuǎn)留在腦海,不會(huì)忘記,不會(huì)褪色.其實(shí)沒(méi)什么放不下的,只是會(huì)覺(jué)得,付出了這么多時(shí)間,卻始終沒(méi)有被感動(dòng)......已知拋物線,且,三點(diǎn)中恰有兩點(diǎn)在拋物線上,另一點(diǎn)是拋物線的焦點(diǎn).

(1)求證:、、三點(diǎn)共線;

(2)若直線過(guò)拋物線的焦點(diǎn)且與拋物線交于、兩點(diǎn),點(diǎn)軸的距離為,點(diǎn)軸的距離為,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.

(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫(xiě)出算式即可,不必計(jì)算出結(jié)果)

(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(jī)(單位:分)對(duì)應(yīng)如下表:

學(xué)生序號(hào)

1

2

3

4

5

6

7

數(shù)學(xué)成績(jī)

60

65

70

75

85

87

90

物理成績(jī)

70

77

80

85

90

86

93

①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績(jī)均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;

②根據(jù)上表數(shù)據(jù),求物理成績(jī)關(guān)于數(shù)學(xué)成績(jī)的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績(jī)?yōu)?6分,預(yù)測(cè)該同學(xué)的物理成績(jī)?yōu)槎嗌俜郑?/span>

附:線性回歸方程,

其中.

76

83

812

526

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一批材料可以建成200m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場(chǎng)地,中間用同樣的材料隔成三個(gè)面積相等的矩形,如何設(shè)計(jì)這塊矩形場(chǎng)地的長(zhǎng)和寬,能使面積最大,并求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案