分析 用數(shù)學歸納法證明:(1)當n=1時,去證明等式成立;(2)假設當n=k時,等時成立,用上歸納假設后,去證明當n=k+1時,等式也成立即可.
解答 證明:n=1時,1-22=-3,左邊等于右邊;
假設n=k時,有12-22+32-…+(2k-1)2-(2k)2=-k(2k+1)成立,
則n=k+1時,12-22+32-…+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-(k+1)(2k+3)=-(k+1)[2(k+1)+1]得證
所以12-22+32-…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*)成立.
點評 本題考查數(shù)學歸納法,用好歸納假設是關鍵,考查邏輯推理與證明的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若x=0或x=1,則x2-x≠0 | B. | 若x2-x=0,則x=0或x=1 | ||
C. | 若x≠0或x≠1,則x2-x≠0 | D. | 若x≠0且x≠1,則x2-x≠0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平面α內(nèi)存在直線與l異面 | B. | 平面α內(nèi)存在唯一直線與l平行 | ||
C. | 平面α內(nèi)存在唯一直線與l垂直 | D. | 平面α內(nèi)的直線與l都相交 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com