10.不同直線m、n和不同平面α、β.給出下列命題:
①$\left.\begin{array}{l}{α∥β}\\{m?α}\end{array}\right\}$⇒m∥β;       ②$\left.\begin{array}{l}{m∥n}\\{m∥β}\end{array}\right\}$⇒n∥β;
③$\left.\begin{array}{l}{m?α}\\{n?β}\end{array}\right\}$⇒m,n異面;  ④$\left.\begin{array}{l}{α⊥β}\\{n∥α}\end{array}\right\}$⇒n⊥β.
其中假命題的個(gè)數(shù)為3.

分析 根據(jù)空間直線與直線,直線與平面的關(guān)系,逐一分析四個(gè)命題的真假,可得答案.

解答 解:①$\left.\begin{array}{l}{α∥β}\\{m?α}\end{array}\right\}$⇒m∥β,故①為真命題;       
②$\left.\begin{array}{l}{m∥n}\\{m∥β}\end{array}\right\}$⇒n∥β或n?β,故②為假命題;
③$\left.\begin{array}{l}{m?α}\\{n?β}\end{array}\right\}$,m,n的關(guān)系不能確定,故③為假命題;
④$\left.\begin{array}{l}{α⊥β}\\{n∥α}\end{array}\right\}$⇒n,β的關(guān)系不能確定,故④為假命題;
故答案為:3.

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了空間直線與直線,直線與平面的關(guān)系,難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求證:
(1)$\frac{1-co{s}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$=sinα+cosα;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(1+cos2α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$.
(1)化簡f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用數(shù)學(xué)歸納法證明等式:12-22+32+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=ax2-bx+2.
(1)若不等式f(x)>0的解集為{x|x>2或x<1},求a和b的值;
(2)若b=2a+1,對任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù)246810
售價(jià)16139.574.5
(Ⅰ)試求y關(guān)于x的回歸直線方程;
(Ⅱ)已知每輛該型號汽車的收購價(jià)格為w=0.05x2-1.75x+17.2萬元,根據(jù)(Ⅰ)中所求的回歸方程,預(yù)測x為何值時(shí),小王銷售一輛該型號汽車所獲得的利潤z最大.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對任意的實(shí)數(shù)x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=$\frac{1}{{f(-2-{a_n})}}$(n∈N*),則a2015的值為( 。
A.4029B.3029C.2249D.2209

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中既是奇函數(shù)又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A.y=sinxB.y=-|x+1|C.$y=ln\frac{2-x}{x+2}$D.$y=\frac{1}{2}({2^x}+{2^{-x}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,m),若$\overrightarrow a$⊥$\overrightarrow b$,則m=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案