(本小題滿分12分)已知拋物線:的準(zhǔn)線經(jīng)過(guò)雙曲線:的左焦點(diǎn),若拋物線與雙曲線的一個(gè)交點(diǎn)是.
(1)求拋物線的方程; (2)求雙曲線的方程.
(1)(2)
解析試題分析:(1)由題意拋物線的方程為,
把代入方程,得,
因此,拋物線的方程為. ……6分
(2)拋物線的準(zhǔn)線方程為,所以,,而雙曲線的另一個(gè)焦點(diǎn)為,
于是因此.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/de/6/f0vck1.png" style="vertical-align:middle;" />,所以,
于是,雙曲線的方程為. ……12分
考點(diǎn):本小題主要考查拋物線與雙曲線的標(biāo)準(zhǔn)方程的求解,考查學(xué)生運(yùn)算求解能力.
點(diǎn)評(píng):求圓錐曲線的標(biāo)準(zhǔn)方程通常用待定系數(shù)法,找清楚焦點(diǎn)的位置,開(kāi)口等,代入條件求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
本小題滿分10分)
求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)過(guò)點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點(diǎn),與x軸交于點(diǎn)M,且y1y2=-1,
(Ⅰ)求證:點(diǎn)的坐標(biāo)為;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B恰好是拋物線的焦點(diǎn),且離心率等于,直線與橢圓C交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點(diǎn)F是否可以為的垂心?若可以,求出直線的方程;若不行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題15分)設(shè)拋物線和點(diǎn),.斜率為的直線與拋物線相交不同的兩個(gè)點(diǎn).若點(diǎn)恰好為的中點(diǎn).
(1)求拋物線的方程,
(2) 拋物線上是否存在異于的點(diǎn),使得經(jīng)過(guò)點(diǎn)的圓和拋物線在處有相同的切線.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知拋物線, 過(guò)點(diǎn)引一弦,使它恰在點(diǎn)被平分,求這條弦所在的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。
(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)D是過(guò)三點(diǎn)的圓上的點(diǎn),D到直線的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓上的任意一點(diǎn)到它兩個(gè)焦點(diǎn)的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com