【題目】已知橢圓的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限交于點,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左、右頂點分別為,,點是橢圓上的動點,且點與點,不重合,直線,與直線分別交于點,,求證:以線段為直徑的圓過定點.

【答案】(Ⅰ);(Ⅱ)證明見解析.

【解析】

(Ⅰ)將代入橢圓方程求出點縱坐標,得到,且等于,再由離心率和關(guān)系,即可求解;

(Ⅱ)設(shè)點,求出線的斜率,,由點的橢圓上,得到為定值,分別求出坐標,證明即可.

(Ⅰ)代入橢圓方程得,

,得,

又因為,

,

所以橢圓的方程為.

(Ⅱ)設(shè)點

又設(shè)直線,的斜率分別為,

,

所以,

∴直線,直線

所以點,

,

所以以線段為直徑的圓過定點,

同理,以線段為直徑的圓過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點, 上異于,的點, .

1)證明:平面平面;

2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.

1)求曲線的普通方程及直線的直角坐標方程;

2)求曲線上的點到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線.

1)若拋物線的焦點到準線的距離為4,點,在拋物線上,線段的中點為,求直線的方程;

2)若圓以原點為圓心,1為半徑,直線分別相切,切點分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,,求實數(shù)的值.

2)若,,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是為參數(shù),),在以坐標原點為極點,軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程是,等邊的頂點都在上,且點,按照逆時針方向排列,點的極坐標為.

(Ⅰ)求點,的直角坐標;

(Ⅱ)設(shè)上任意一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),為常數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)當直線與曲線相切時,求出常數(shù)的值;

2)當為曲線上的點,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標準a,用電量不超過a的部分按平價收費,超出a的部分按議價收費為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,分組的頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計該市每戶居民月平均用電量的值;

用頻率估計概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布

估計該市居民月平均用電量介于度之間的概率;

利用的結(jié)論,從該市所有居民中隨機抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率相等.橢圓的右焦點為F,過點F的直線與橢圓交于A,B兩點,射線與橢圓交于點C,橢圓的右頂點為D

1)求橢圓的標準方程;

2)若的面積為,求直線的方程;

3)若,求證:四邊形是平行四邊形.

查看答案和解析>>

同步練習冊答案