函數(shù)f(x)=
mx2-2x+1
的定義域為R,則實數(shù)m的取值范圍是( 。
A、(0,1)
B、(1,+∞)
C、[0,+∞)
D、[1,+∞)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將函數(shù)f(x)=
mx2-2x+1
的定義域為R轉(zhuǎn)化成mx2-2x+1≥0在R上恒成立,然后討論m,從而求出m的范圍.
解答: 解:∵函數(shù)f(x)=
mx2-2x+1
的定義域為R
∴mx2-2x+1≥0在R上恒成立
①當(dāng)m=0時,-2x+1≥0,不滿足
m>0
△=4-4m≤0

解得:m≥1
∴綜上所述m≥1
故選:D
點(diǎn)評:本題主要考查了恒成立問題,需要討論二次項系數(shù),同時考查來了轉(zhuǎn)化能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
=(2,x-1),
CD
=(1,-y)(xy>0),且
AB
CD
,則
2
x
+
1
y
的最小值等于( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在(-4,4)上的奇函數(shù),且在(-4,0]上為減函數(shù),則不等式f(x-2)+f(4+x)≤0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=10,當(dāng)且僅當(dāng)n=5時,前n項和Sn取得最大值,則公差d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-2x-16≤0},B={x|C
 
x
5
≤5},則A∩B中元素個數(shù)為( 。
A、6個B、4個C、2個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
sinα+cosα
sinα-cosα
=2,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a3=-6,a7=-12,則a5=( 。
A、±9
B、-9
C、±6
2
D、-6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b都是整數(shù),且
1
a
-
1
b
=
2
a+b
,求
ab
a2-b2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱柱ABC-A1B1C1中,D是AC的中點(diǎn),AB1⊥BC1,則平面DBC1與平面CBC1所構(gòu)成的角為
 

查看答案和解析>>

同步練習(xí)冊答案