已知隨機變量ξ~N(0,σ2),若P(-2≤ξ≤0)=0.2,則P(ξ≥2)等于
 
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:本題考查正態(tài)分布曲線的性質(zhì),隨機變量ξ服從正態(tài)分布N(0,σ2),由此知曲線的對稱軸為Y軸,利用P(ξ≥2)=
1
2
[1-P(-2≤ξ≤2)],即可得出結(jié)論.
解答: 解:∵隨機變量ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.2,
∴P(-2≤ξ≤2)=0.4
∴P(ξ≥2)=
1
2
[1-P(-2≤ξ≤2)]=0.3.
故答案為:0.3.
點評:本題考查正態(tài)分布曲線的重點及曲線所表示的意義,解題的關(guān)鍵是正確正態(tài)分布曲線的重點及曲線所表示的意義,由曲線的對稱性求出概率,本題是一個數(shù)形結(jié)合的題,識圖很重要.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=x-
3
x
在P(x0,y0)處的切線于y軸以及直線y=x所圍成的三角形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:質(zhì)數(shù)序列2,3,5,7,11,13,17,19…是無限的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式為an=(2n-1)•2n,我們用錯位相減法求其前n項和Sn,有Sn=1×2+3×22+5×23+…+(2n-1)•2n
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出值x∈(16,25),則輸入x值可以是(  )
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OP
=(2cos(
π
2
+x),-1),
OQ
=(-sin(
π
2
-x),cos2x),f(x)=
OP
.
OQ
.若a,b,c分別是銳角△ABC中角A,B,C的對邊,且滿足f(A)=1,b+c=5+3
2
.a(chǎn)=
13
,則△ABC的面積為
 
.•

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由不等式組
x≥0
y≥-1
x+y≤1
確定的平面區(qū)域記為Ω1,曲線y=x2-l(x≥0)與坐標(biāo)軸所圍成的平面區(qū)域記為Ω2.在Ω1中隨機取一點,則該點恰好在Ω2內(nèi)的概率為( 。
A、
1
3
B、
2
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線C1:ρ=2cosθ與曲線C2:y(y-mx-m)=0有4個不同的交點,則實數(shù)m的取值范圍是(  )
A、(-
3
3
,
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a,b滿足a+2b=2,則3a+9b的最小值是( 。
A、6
B、12
C、2
3
D、4
3

查看答案和解析>>

同步練習(xí)冊答案