解:(1)求導(dǎo)函數(shù)可得f'(x)=
①當(dāng)a=0時(shí),f'(x)>0時(shí)x>0,即函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f'(x)<0時(shí)x<0,即函數(shù)f(x)在(-∞,0)上單調(diào)遞減;
②當(dāng)a≠0且|a|≤1時(shí),由f'(x)=0,得ax
2-2x+a=0,∴
,
1°a=1時(shí),f'(x)≤0,∴函數(shù)f(x)在R上單調(diào)遞減;
2°a=-1時(shí),f'(x)≥0,∴函數(shù)f(x)在R上單調(diào)遞增;
3°當(dāng)-1<a<0時(shí),由f'(x)>0可得x<x
1或x>x
2,即函數(shù)f(x)在(-∞,
)、(
,+∞)上單調(diào)遞增,在(
,
)上單調(diào)遞減;
4°當(dāng)0<a<1時(shí),由f'(x)>0可得x
1<x<x
2,即函數(shù)f(x)在(
,
)上單調(diào)遞增,在(-∞,
)、(
,+∞)上單調(diào)遞減;
(2)f(x)的圖象與g(x)的圖象恰有四個(gè)不同的交點(diǎn),則f(x)=g(x)有四個(gè)根,即a=ln(x
2+1)-
令G(x)=ln(x
2+1)-
,則 G′(x)=
x | (-∞,-1) | -1 | (-1,0) | 0 | (0,1) | 1 | (1,+∞) |
G′(x) | + | 0 | - | 0 | + | | |
G(x) | | ln2 | | | | ln2 | |
∴x=0時(shí),函數(shù)取得極小值
,x=±1時(shí),函數(shù)確定極大值 ln2
∴a∈(
,ln2).
分析:(1)求導(dǎo)函數(shù),對(duì)a進(jìn)行分類討論:①當(dāng)a=0時(shí),f'(x)>0時(shí)x>0,f'(x)<0時(shí)x<0;②當(dāng)a≠0且|a|≤1時(shí),考慮a=1,a=-1,-1<a<0,0<a<1利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;
(2)f(x)的圖象與g(x)的圖象恰有四個(gè)不同的交點(diǎn),則f(x)=g(x)有四個(gè)根,即a=ln(x
2+1)-
,構(gòu)造新函數(shù),確定函數(shù)的極值,即可求得a的取值范圍.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想,考查函數(shù)圖象的交點(diǎn),考查函數(shù)的極值,綜合性強(qiáng).