已知函數(shù)f(x)=sinωx+cosωx(ω>0),如果存在實數(shù)x1,使得對任意的實數(shù)x,都有f(x1)≤f(x)≤f(x1+2013)成立,則ω的最小值為(  )
A、
1
4026
B、
π
4026
C、
1
2013
D、
π
2013
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:化簡可得f(x)=
2
sin(ωx+
π
4
),進而可得(n+
1
2
)•
ω
=2013,n為自然數(shù),解ω可得.
解答: 解:化簡可得f(x)=sinωx+cosωx=
2
sin(ωx+
π
4
),
要滿足使得對任意的實數(shù)x,都有f(x1)≤f(x)≤f(x1+2013)成立,
則(n+
1
2
)•
ω
=2013,n為自然數(shù),
解得ω=
2n+1
2013
π,∴當n=0時,ω的值最小,最小為
π
2013

故選:D
點評:本題考查三角函數(shù)的公式的應用,涉及周期性,屬基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品每三年降價
1
4
,目前價格是640,則9年后此產(chǎn)品的價格是( 。
A、270B、240
C、210D、360

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上的動點,F(xiàn)1,F(xiàn)2分別是其左、右焦點,O為坐標原點,若
|PF1|+|PF2|
|OP|
的最大值是
6
,則此雙曲線的離心率是( 。
A、
3
B、
6
2
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在以點C為圓心,且與直線BD相切的圓內(nèi)運動,設
AP
AD
AB
(α,β∈R),則α+β的取值范圍是(  )
A、(0,
4
3
]
B、[
4
3
5
3
]
C、(1,
4
3
D、(1,
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
-1  x>0
1  x<0
,則
(a+b)+(a-b)•f(a-b)
2
(a≠b)的值為( 。
A、aB、b
C、a,b中較小的數(shù)D、a,b中較大的數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P為矩形ABCD所在平面外一點,矩形對角線交點為O,M為PB的中點,給出五個結(jié)論:①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA,⑤OM∥平面PCB.
其中正確的個數(shù)有( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知gn(x)+1=
n
k=1
xn
k2
(x∈R,n∈N*),則下列說法正確的是( 。
①gn(x)關(guān)于點(0,-1)成中心對稱.
②gn(x)在(0,+∞)單調(diào)遞增.
③當n取遍N*中所有數(shù)時不可能存在c∈[
2
3
,1]使得gn(c)=0.
A、①②③B、②③C、①③D、②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=(x+1)2
B、y=|x|•x
C、y=2x+2-x
D、y=
x
x2+sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-2≤x≤4},B={x|x>a},3∈A∩B,求a的值.

查看答案和解析>>

同步練習冊答案