【題目】重慶一中為了增強學(xué)生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,兩隊各由4名選手組成,每局兩隊各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時隊的得分高于隊的得分的概率為(

A. B. C. D.

【答案】A

【解析】分析:分三種情況求解:即A5B0;A4B1分;A3B2分,然后根據(jù)互斥事件的概率公式可得所求

詳解:(1)A5B0分,即A隊四局全勝,概率為

(2)A4B1分,即A隊一、二、四局中敗1局,第3局勝,

其概率為.

(3)A3B2分,包括兩種情況:①A隊第3局敗,其余各局勝;②A隊第一、、四局中勝1局,第3局勝

其概率為

由互斥事件的概率加法公式可得所求概率為

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有一些大小相同的小球,其中號數(shù)為1的小球1個,號數(shù)為2的小球2個,號數(shù)為3的小球3個,,號數(shù)為n的小球有n個,從袋中取一球,其號數(shù)記為隨機變量,則的數(shù)學(xué)期望E=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線都經(jīng)過點.直線平行,且與橢圓交于兩點,直線軸分別交于兩點.

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同條件下各打靶10次,每次打靶所得的環(huán)數(shù)如圖所示.

填寫下表,請從下列角度對這次結(jié)果進行分析.

命中9環(huán)及以上的次數(shù)

平均數(shù)

中位數(shù)

方差

(1)命中9環(huán)及以上的次數(shù)(分析誰的成績好些);

(2)平均數(shù)和中位數(shù)(分析誰的成績好些);

(3)方差(分析誰的成績更穩(wěn)定);

(4)折線圖上兩人射擊命中環(huán)數(shù)的走勢(分析誰更有潛力).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程個不同實數(shù)根,則n的值不可能為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ex1﹣ax的圖象與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時,f(x)>m(x﹣1)lnx,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣2cos2x,下面結(jié)論中錯誤的是(
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的圖象關(guān)于x= 對稱
C.函數(shù)f(x)的圖象可由g(x)=2sin2x﹣1的圖象向右平移 個單位得到
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),圓的標準方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求直線和圓的極坐標方程;

(2)若射線與的交點為,與圓的交點為,且點恰好為線段的中點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

同步練習(xí)冊答案