【題目】設(shè)函數(shù),若方程恰有兩個(gè)不相等的實(shí)根,則的最大值為( )
A. B. C. D.
【答案】C
【解析】令g(x)=f(f(x))=,
∵y=f(x)在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
∴g(x)=f(f(x))在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
做出g(x)=f(f(x))的函數(shù)圖象如圖所示:
∵方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1,x2,
不妨設(shè)x1<x2,則x1≤﹣1,x2≥0,且f(x1)=f(x2),即x12=.
∴,
令h(x1)=,則h′(x1)=,
∴當(dāng)x1<﹣2時(shí),h′(x1)>0,當(dāng)﹣2<x1<﹣1時(shí),h′(x1)<0,
∴h(x1)在(﹣∞,﹣2)上單調(diào)遞增,在(﹣2,﹣1)上單調(diào)遞減,
∴當(dāng)x1=﹣2時(shí),h(x1)取得最大值h(﹣2)=.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程,變量增加一個(gè)單位時(shí), 平均增加個(gè)單位;
③老師在某班學(xué)號(hào)為1~50的50名學(xué)生中依次抽取學(xué)號(hào)為5,10,15,20,25,30,35,40,45,50的學(xué)生進(jìn)行作業(yè)檢查,這種抽樣方法是系統(tǒng)抽樣;
其中正確的個(gè)數(shù)是( )
A. B. 2 C. D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中, 平面, 平面, , ,又, .
(1)求 與平面所成角的正弦值;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線y2=32x上各點(diǎn)向x軸作垂線,其垂線段中點(diǎn)的軌跡為E.
(1)求軌跡E的方程;
(2)已知直線l:y=k(x-2)(k>0)與軌跡E交于A,B兩點(diǎn),且點(diǎn)F(2,0),若|AF|=2|BF|,求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓,點(diǎn)在圓上,點(diǎn)在圓上.
(1)求的最小值;
(2)直線上是否存在點(diǎn),滿足經(jīng)過點(diǎn)由無數(shù)對(duì)相互垂直的直線和,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)當(dāng)a=2時(shí),求A∪B和(RA)∩B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù) 是奇函數(shù).
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)設(shè)關(guān)于x的函數(shù)F(x)=f(4x﹣b)+f(﹣2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com