如圖,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=
5
,AA1=3,M為線段BB1上的一動點,則當(dāng)AM+MC1最小時,△AMC1的面積為
 
考點:多面體和旋轉(zhuǎn)體表面上的最短距離問題
專題:空間位置關(guān)系與距離
分析:先將直三棱柱ABC-A1B1C1沿棱BB1展開成平面連接AC1,與BB1的交點即為滿足AM+MC1最小時的點M,
由此可以求得△AMC1的三邊長,再由余弦定理求出其中一角,由面積公式求出面積
解答: 解:將直三棱柱ABC-A1B1C1沿棱BB1展開成平面連接AC1,與BB1的交點即為滿足AM+MC1最小時的點M,
由于AB=1,BC=2,AA1=3,再結(jié)合棱柱的性質(zhì),可得BM=
1
3
AA1=1,故B1M=2
由圖形及棱柱的性質(zhì),可得AM=
2
,AC1=
14
,MC1=2
2
,cos∠AMC1=
2+8-14
2
×2
2
=-
1
2

故sin∠AMC1=
3
2
,△AMC1的面積為
1
2
×
2
×2
2
×
3
2
=
3

故答案為:
3
點評:本題考查棱柱的特征,求解本題的關(guān)鍵是根據(jù)棱柱的結(jié)構(gòu)特征及其棱長等求出三角形的邊長,再由面積公式求面積,本題代數(shù)與幾何相結(jié)合,綜合性強,解題時要注意運算準確,正確認識圖形中的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過兩點P1
1
3
,
1
3
),P2(0,
1
2
)的橢圓的標準方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cos(x-
6
)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得圖象向左平移
π
3
個單位,則所得函數(shù)具有性質(zhì)是( 。
A、圖象關(guān)于直線x=
π
12
對稱
B、圖象關(guān)于(
π
6
,0)
對稱
C、圖象關(guān)于直線x=
4
3
π對稱
D、圖象關(guān)于(
5
6
π,0)
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,tanβ=3,則tan(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知光線通過點M(-3,4),被直線l:x-y+3=0反射,反射光線通過點N(2,6),則反射光線所在直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an=
Sn
n
+2(n-1)(n∈N*)
,若S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2
=4027,則n的值為(  )
A、4027B、2013
C、2014D、4026

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x,x≥0
log
1
2
(-x),x<0
,則函數(shù)y=f(x)-(x2+1)的零點個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和Sn=3n2+3n(n∈N*),bn=lg
an+1
an
(n∈N*),則數(shù)列{bn}的前99項和T99=( 。
A、6B、2
C、lg99D、3lg99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)ABCD內(nèi)球O上的四個點,若AB,AC,AD兩兩互相垂直,且AB=1,AC=2,AD=2,則此球的體積為
 

查看答案和解析>>

同步練習(xí)冊答案