如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為的直線l被C所截線段的長(zhǎng)度.
解 (1)設(shè)M的坐標(biāo)為(x,y),P的坐標(biāo)為(xP,yP),
因?yàn)辄c(diǎn)D是P在x軸上投影M為PD上一點(diǎn),且|MD|=|PD|,所以xP=x,且yP=y,
∵P在圓x2+y2=25上,
∴x2+2=25,整理得+=1,
即C的方程是+=1.
(2)過(guò)點(diǎn)(3,0)且斜率為的直線l的方程是y=(x-3),
設(shè)此直線與C的交點(diǎn)為A(x1,y1),B(x2,y2),將直線方程y=(x-3)代入C的方程+=1得:
+=1,化簡(jiǎn)得x2-3x-8=0,
∴x1=,x2=,
所以線段AB的長(zhǎng)度是|AB|===,即所截線段的長(zhǎng)度是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C1:+y2=1,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過(guò)A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
拋物線x2=2py(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線-=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,A(m,m)和B(n,-n)兩點(diǎn)分別在射線OS,OT上移動(dòng),且·=-,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足=+.
(1)求mn的值;
(2)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明它表示什么曲線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)A(1,0),直線l:y=2x-4,點(diǎn)R是直線l上的一點(diǎn),若,則點(diǎn)P的軌跡方程為( ).
A.y=-2x B.y=2x
C.y=2x-8 D.y=2x+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)A(2,0),B(-2,0),P是平面內(nèi)一動(dòng)點(diǎn),直線PA,PB斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)作直線l,與軌跡C交于E,F兩點(diǎn),線段EF的中點(diǎn)為M,求直線MA的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線x2-=1的焦點(diǎn)為F1,F2,點(diǎn)M在雙曲線上且=0,則M到x軸的距離為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),且,若不等式恒成立,則實(shí)數(shù)的取值范圍為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com