【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為,這兩條曲線在第一象限的交點(diǎn)為, 是以為底邊的等腰三角形.若,記橢圓與雙曲線的離心率分別為,則的取值范圍是( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+lg +x)的定義域是R.
(1)判斷f(x)在R上的單調(diào)性,并證明;
(2)若不等式f(m3x)+f(3x﹣9x﹣4)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域是(0,+∞),且對(duì)任意的正實(shí)數(shù)x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1時(shí),f(x)>0.
(1)求f( )的值;
(2)判斷y=f(x)在(0,+∞)上的單調(diào)性,并給出你的證明;
(3)解不等式f(x2)>f(8x﹣6)﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無實(shí)根,若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a≠0),若對(duì)任意實(shí)數(shù)x,不等式2x≤f(x) (x+1)2恒成立.
(1)求f(1)的值;
(2)求a的取值范圍;
(3)若函數(shù)g(x)=f(x)+2a|x﹣1|,x∈[﹣2,2]的最小值為﹣1,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水是地球上寶貴的資源,由于價(jià)格比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴(yán)重的資源浪費(fèi).某市政府為了提倡低碳環(huán)保的生活理念鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,,…,分成9組,制成了如圖所示的頻率分布直方圖.
(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計(jì)全市有多少居民?并說明理由;
(2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為和之間選取7戶居民作為議價(jià)水費(fèi)價(jià)格聽證會(huì)的代表,并決定會(huì)后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)為用水量噸數(shù)在中的獲獎(jiǎng)的家庭數(shù),為用水量噸數(shù)在中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于集合,定義函數(shù)對(duì)于兩個(gè)集合,定義集合. 已知, .
(Ⅰ)寫出和的值,并用列舉法寫出集合;
(Ⅱ)用表示有限集合所含元素的個(gè)數(shù),求的最小值;
(Ⅲ)有多少個(gè)集合對(duì),滿足,且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計(jì)劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com