精英家教網(wǎng)如圖,已知雙曲線x2-
y2
3
=1
,A,C分別是虛軸的上、下頂點(diǎn),B是左頂點(diǎn),F(xiàn)為左焦點(diǎn),直線AB與FC相交于點(diǎn)D,則∠BDF的余弦值是( 。
A、
7
7
B、
5
7
7
C、
7
14
D、
5
7
14
分析:利用雙曲線的簡(jiǎn)單性質(zhì)求出直線方程,求出三角形三個(gè)頂點(diǎn)的坐標(biāo),利用余弦定理求得cos∠BDF 的值.
解答:解:由題意得A(0,b),C(0,-b),B(-a,0),F(xiàn)(-c,0),
c
a
=2.
∴BF=c-a=a,BD 的方程為
x
-a
+
y
b
=1
,即  bx-ay+ab=0,
DC的方程為 
x
-c
y
-b
=1
,即 bx+cy+bc=0,即 bx+2ay+2ab=0,
bx - ay +ab = 0
bx +2ay + 2ab = 0 
得 D (-
4a
3
,-
b
3
),又 b=
c2a2
=
3
 a,
∴FD=
(-c+
4
3
a)
2
+
b2
9
=
7a2
9
,BD=
(-a+
4
3
a)
2
+
b2
9
=
4
9
a2
,
三角形BDF中,由余弦定理得 a2
7
9
a2+
4
9
a2-2
7a2
9
4a2
9
cos∠BDF,
∴cos∠BDF=
7
14
,
故選 C.
點(diǎn)評(píng):本題考查求直線方程,求兩直線的焦點(diǎn)坐標(biāo),余弦定理,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(b>a>0)且a∈[1,2],它的左、右焦點(diǎn)為F1,F(xiàn)2,左右頂點(diǎn)分別為A、B.過F2作圓x2+y2=a2的切線,切點(diǎn)為T,交雙曲線與P、Q兩點(diǎn).
(Ⅰ)求證直線PQ與雙曲線的一條漸近線垂直.
(Ⅱ)若M為PF2的中點(diǎn),O為坐標(biāo)原點(diǎn),|OM|-|MT|=1,|PQ|=λ|AB|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過點(diǎn)P的直線與C1,C2都有公共點(diǎn),則稱P為“C1-C2型點(diǎn)”
(1)在正確證明C1的左焦點(diǎn)是“C1-C2型點(diǎn)“時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1-C2型點(diǎn)”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷解析版) 題型:填空題

如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過點(diǎn)P的直線與C1,C2都有公共點(diǎn),則稱P為“C1﹣C2型點(diǎn)“

(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)“時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);

(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;

(3)求證:圓x2+y2=內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:解答題

如圖,已知雙曲線x2-y2=1的左、右頂點(diǎn)分別為A1、A2,動(dòng)直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點(diǎn)分別為P1(x1,y1),P2(x2,y2)。
(1)求k的取值范圍,并求x2-x1的最小值;
(2)記直線P1A1的斜率為k1,直線P2A2的斜率為k2,那么,k1·k2是定值嗎?證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案